论文标题
宠物是您需要的吗?使用3D CNN进行的一项多模式研究,用于阿尔茨海默氏病
Is a PET all you need? A multi-modal study for Alzheimer's disease using 3D CNNs
论文作者
论文摘要
阿尔茨海默氏病(AD)是痴呆症的最常见形式,由于痴呆症的多因素病因,通常很难诊断。关于基于神经成像的深度神经网络(DNN)的基于神经成像的计算机辅助诊断(DNNS)的最新著作表明,结构磁共振图像(SMRI)和氟脱氧葡萄糖正电子发射层析成像(FDG-PET)可提高健康对照组和AD的受试者的准确性。但是,这一结果与既定的临床知识冲突,即FDG-PET比SMRI更好地捕获AD特定的病理。因此,我们提出了一个框架,用于对基于FDG-PET和SMRI的多模式DNN和批判性重新评估单模式DNN和二进制健康与AD的SMRI,以及三向健康/轻度的健康/轻度健康/轻度认知障碍/AD分类。我们的实验表明,使用FDG-PET的单模式网络的性能优于MRI(准确性0.91 vs 0.87),并且在组合时不会显示出改进。这符合有关AD生物标志物的既定临床知识,但提出了有关多模式DNN的真正好处的问题。我们认为,未来关于多模式融合的工作应系统地评估我们提出的评估框架后的单个方式的贡献。最后,我们鼓励社区超越健康与AD分类,并专注于痴呆症的鉴别诊断,在这种诊断中,融合了多模式图像信息与临床需求相符。
Alzheimer's Disease (AD) is the most common form of dementia and often difficult to diagnose due to the multifactorial etiology of dementia. Recent works on neuroimaging-based computer-aided diagnosis with deep neural networks (DNNs) showed that fusing structural magnetic resonance images (sMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) leads to improved accuracy in a study population of healthy controls and subjects with AD. However, this result conflicts with the established clinical knowledge that FDG-PET better captures AD-specific pathologies than sMRI. Therefore, we propose a framework for the systematic evaluation of multi-modal DNNs and critically re-evaluate single- and multi-modal DNNs based on FDG-PET and sMRI for binary healthy vs. AD, and three-way healthy/mild cognitive impairment/AD classification. Our experiments demonstrate that a single-modality network using FDG-PET performs better than MRI (accuracy 0.91 vs 0.87) and does not show improvement when combined. This conforms with the established clinical knowledge on AD biomarkers, but raises questions about the true benefit of multi-modal DNNs. We argue that future work on multi-modal fusion should systematically assess the contribution of individual modalities following our proposed evaluation framework. Finally, we encourage the community to go beyond healthy vs. AD classification and focus on differential diagnosis of dementia, where fusing multi-modal image information conforms with a clinical need.