论文标题
隐式神经空间过滤,用于波形域中多通道源分离
Implicit Neural Spatial Filtering for Multichannel Source Separation in the Waveform Domain
论文作者
论文摘要
我们提出了一个单阶段的休闲波形到波形多通道模型,该模型可以根据动态声学场景中的广泛空间位置分开移动的声音源。我们将场景分为两个空间区域,分别包含目标和干扰声源。该模型经过训练有素的端到端,并隐含地进行空间处理,而没有基于传统处理或使用手工制作的空间特征的任何组件。我们在现实世界数据集上评估了所提出的模型,并表明该模型与Oracle Beamformer的性能匹配,然后是最先进的单渠道增强网络。
We present a single-stage casual waveform-to-waveform multichannel model that can separate moving sound sources based on their broad spatial locations in a dynamic acoustic scene. We divide the scene into two spatial regions containing, respectively, the target and the interfering sound sources. The model is trained end-to-end and performs spatial processing implicitly, without any components based on traditional processing or use of hand-crafted spatial features. We evaluate the proposed model on a real-world dataset and show that the model matches the performance of an oracle beamformer followed by a state-of-the-art single-channel enhancement network.