论文标题
量子基因调节网络
Quantum gene regulatory networks
论文作者
论文摘要
在这项工作中,我们提出了用于推断基因调节网络(GRN)的量子电路模型。该模型基于使用Qubit-Qubit纠缠模拟基因之间的相互作用的想法。我们提供的初步结果表明我们的量子GRN建模方法具有竞争力,并需要进一步研究。具体而言,我们介绍了从人类细胞系的单细胞转录组数据得出的结果,重点是涉及先天免疫调节的基因。我们证明,我们的量子电路模型可用于预测基因之间的调节相互作用的存在,并估算相互作用的强度和方向,为量子计算如何在数据驱动的生命科学中找到应用,更重要的是,为邀请探索量子algorithm Design的探索,以进一步研究量子计算的应用,以利用单电池数据的优势。量子计算在单细胞转录组数据上的应用同样有助于对GRN的新理解,因为与统计相关性相比,量子建模可以通过量子建模更有效地接近完全互连的基因之间的关系。
In this work, we present a quantum circuit model for inferring gene regulatory networks (GRNs). The model is based on the idea of using qubit-qubit entanglement to simulate interactions between genes. We provide preliminary results that suggest our quantum GRN modeling method is competitive and warrants further investigation. Specifically, we present the results derived from the single-cell transcriptomic data of human cell lines, focusing on genes in involving innate immunity regulation. We demonstrate that our quantum circuit model can be used to predict the presence or absence of regulatory interactions between genes and estimate the strength and direction of the interactions, setting the stage for further investigations on how quantum computing finds applications in data-driven life sciences and, more importantly, to invite exploration of quantum algorithm design that takes advantage of the single-cell data. The application of quantum computing on single-cell transcriptomic data likewise contributes to a novel understanding of GRNs, given that the relationship between fully interconnected genes can be approached more effectively by quantum modeling than by statistical correlations.