论文标题
医疗图像分割中单个领域概括的对抗性一致性
Adversarial Consistency for Single Domain Generalization in Medical Image Segmentation
论文作者
论文摘要
一种可以推广到看不见的对比和扫描仪设置的器官分割方法可以显着减少对深度学习模型的重新培训的需求。域概括(DG)旨在实现这一目标。但是,大多数用于分割的DG方法都需要训练期间来自多个领域的训练数据。我们提出了一种针对从\ emph {single}域的数据训练的器官分割的新型对抗域概括方法。我们通过学习对抗域合成器(AD)合成新域,并假定合成域覆盖了足够大的合理分布区域,以便可以从合成域中插值看不见的域。我们提出了一个共同的信息正常化程序,以实现合成域中图像之间的语义一致性,可以通过贴片级的对比度学习来估计。我们评估了各种器官分割的方法,以实现看不见的方式,扫描协议和扫描仪位点。
An organ segmentation method that can generalize to unseen contrasts and scanner settings can significantly reduce the need for retraining of deep learning models. Domain Generalization (DG) aims to achieve this goal. However, most DG methods for segmentation require training data from multiple domains during training. We propose a novel adversarial domain generalization method for organ segmentation trained on data from a \emph{single} domain. We synthesize the new domains via learning an adversarial domain synthesizer (ADS) and presume that the synthetic domains cover a large enough area of plausible distributions so that unseen domains can be interpolated from synthetic domains. We propose a mutual information regularizer to enforce the semantic consistency between images from the synthetic domains, which can be estimated by patch-level contrastive learning. We evaluate our method for various organ segmentation for unseen modalities, scanning protocols, and scanner sites.