论文标题
通过变异自动编码器的图形逆问题的图形扩散的来源定位
Source Localization of Graph Diffusion via Variational Autoencoders for Graph Inverse Problems
论文作者
论文摘要
图扩散问题,例如谣言,计算机病毒或智能电网失败的传播是无处不在的和社会的。因此,根据当前的图扩散观测值鉴定扩散源通常至关重要。尽管在实践中具有巨大的必要性和意义,但作为图扩散的反面问题,源定位是极具挑战性的,因为它被划分了:不同的来源可能导致相同的图形扩散模式。与大多数传统的来源本地化方法不同,本文着重于概率方式,以说明不同候选来源的不确定性。这样的努力需要克服挑战,包括1)很难量化图形扩散源定位的不确定性; 2)图形扩散源的复杂模式很难被概率地表征; 3)很难强加任何潜在的扩散模式下的概括。为了解决上述挑战,本文提出了一个通用框架:用于在任意扩散模式下定位扩散源的源定位变化自动编码器(SL-VAE)。特别是,我们提出了一个概率模型,该模型利用正向扩散估计模型以及深层生成模型来近似扩散源分布,以量化不确定性。 SL-VAE进一步利用了对源观察对的先验知识来表征通过学习的生成性生成的扩散源的复杂模式。最后,一个集成正向扩散估计模型的统一目标被得出以强制执行模型以在任意扩散模式下概括。在7个现实世界数据集上进行了广泛的实验,以证明SL-VAE在重建扩散源的优越性,通过平均20%的AUC分数来重建扩散源。
Graph diffusion problems such as the propagation of rumors, computer viruses, or smart grid failures are ubiquitous and societal. Hence it is usually crucial to identify diffusion sources according to the current graph diffusion observations. Despite its tremendous necessity and significance in practice, source localization, as the inverse problem of graph diffusion, is extremely challenging as it is ill-posed: different sources may lead to the same graph diffusion patterns. Different from most traditional source localization methods, this paper focuses on a probabilistic manner to account for the uncertainty of different candidate sources. Such endeavors require overcoming challenges including 1) the uncertainty in graph diffusion source localization is hard to be quantified; 2) the complex patterns of the graph diffusion sources are difficult to be probabilistically characterized; 3) the generalization under any underlying diffusion patterns is hard to be imposed. To solve the above challenges, this paper presents a generic framework: Source Localization Variational AutoEncoder (SL-VAE) for locating the diffusion sources under arbitrary diffusion patterns. Particularly, we propose a probabilistic model that leverages the forward diffusion estimation model along with deep generative models to approximate the diffusion source distribution for quantifying the uncertainty. SL-VAE further utilizes prior knowledge of the source-observation pairs to characterize the complex patterns of diffusion sources by a learned generative prior. Lastly, a unified objective that integrates the forward diffusion estimation model is derived to enforce the model to generalize under arbitrary diffusion patterns. Extensive experiments are conducted on 7 real-world datasets to demonstrate the superiority of SL-VAE in reconstructing the diffusion sources by excelling other methods on average 20% in AUC score.