论文标题
均衡的手性磁效应
Chiral Magnetic Effect out of equilibrium
论文作者
论文摘要
我们考虑在平衡中晶格正则化中的相对论效费系统。手性磁导率$σ_{cme} $是在空间无限系统中计算出的手性化学电位取决于时间的情况,而系统最初处于较小但非零温度下的热平衡。我们发现,对于任何非零$ω$的频率取决于$σ_{cme}(ω)$,当lattice型号接近连续限制时,$ω\ ll t $和$ω\ ll t $和$ω\ ll t $和$ω\ gg t $等于其常规值$ 1 $。请注意,当手性化学电位完全不取决于时间时,$σ_{cme} = 0 $。因此,我们确认,对于无质量费米子的空间无限系统而消失的$ω$的极限并不是规则的。
We consider relativistic fermionic systems in lattice regularization out of equilibrium. The chiral magnetic conductivity $σ_{CME}$ is calculated in spatially infinite system for the case when the chiral chemical potential depends on time while the system initially was in thermal equilibrium at small but nonzero temperature. We find that the frequency dependent $σ_{CME}(ω)$ for any nonzero $ω$ both in the limits $ω\ll T$ and $ω\gg T$ is equal to its conventional value $1$ when the lattice model approaches continuum limit. Notice that $σ_{CME} = 0$ for the case when the chiral chemical potential does not depend on time at all. We therefore confirm that the limit of vanishing $ω$ is not regular for the spatially infinite systems of massless fermions.