论文标题

稀疏的时间跨度较低

Sparse Temporal Spanners with Low Stretch

论文作者

Bilò, Davide, D'Angelo, Gianlorenzo, Gualà, Luciano, Leucci, Stefano, Rossi, Mirko

论文摘要

时间图是一个无向图$ g =(v,e)$,以及一个函数,该函数在$ e $中为每个边缘分配一个时间标签。 $ g $的一条路径,带有非降低时间标签的路径称为时间路径,从$ u $到$ v $的距离是临时路径的最小长度(即边缘数),从$ u $到$ v $。 $ g $的时间$α$ spanner是一个(时间)子图$ h $,它保留了$ v $中任何一对顶点之间的距离,最大乘以$α$。 $ h $的大小是其边缘的数量。 在这项工作中,我们研究了时间跨度的尺寸拉伸折衷。我们表明,时间集团总是接纳一个时间$(2K-1) - $ spanner,带有$ \ tilde {o}(kn^{1+ \ frac {1} {1} {k}})$ edges,其中$ k> 1 $是一个选择的整数参数。选择$ k = \ lfloor \ log n \ rfloor $,我们获得了一个时间$ o(\ log n)$ - 带有$ \ tilde {o}(n)$ edges,其大小几乎相同(最多可与对数因素)作为时间范围的时间(Casteigts et al.Jcss peative in。 然后,我们考虑一般的时间图。由于任何具有连接性的时间子图[Axiotis等,iCalp'16]可能需要$ω(n^2)$边缘,因此我们专注于近似于单个源的距离。我们表明,对于任何小$ \ varepsilon> 0 $,$ \ tilde {o}(n/\ log(1+ \ varepsilon))$边缘足以获得$(1+ \ varepsilon)$。该结果本质上是紧密的,因为有时间图,任何时间子图都必须使用$ω(n^2)$ edge。我们将分析扩展为证明$ \ tilde {o}(n^2/β)$的上限上的任何时间$β$ - addive spanner的大小,这与pologogarithmic因子有关。 最后,我们研究了$ g $的寿命如何,即其独特的时间标签的数量会影响颞扳手的大小和延伸之间的权衡。

A temporal graph is an undirected graph $G=(V,E)$ along with a function that assigns a time-label to each edge in $E$. A path in $G$ with non-decreasing time-labels is called temporal path and the distance from $u$ to $v$ is the minimum length (i.e., the number of edges) of a temporal path from $u$ to $v$. A temporal $α$-spanner of $G$ is a (temporal) subgraph $H$ that preserves the distances between any pair of vertices in $V$, up to a multiplicative stretch factor of $α$. The size of $H$ is the number of its edges. In this work we study the size-stretch trade-offs of temporal spanners. We show that temporal cliques always admit a temporal $(2k-1)-$spanner with $\tilde{O}(kn^{1+\frac{1}{k}})$ edges, where $k>1$ is an integer parameter of choice. Choosing $k=\lfloor\log n\rfloor$, we obtain a temporal $O(\log n)$-spanner with $\tilde{O}(n)$ edges that has almost the same size (up to logarithmic factors) as the temporal spanner in [Casteigts et al., JCSS 2021] which only preserves temporal connectivity. We then consider general temporal graphs. Since $Ω(n^2)$ edges might be needed by any connectivity-preserving temporal subgraph [Axiotis et al., ICALP'16], we focus on approximating distances from a single source. We show that $\tilde{O}(n/\log(1+\varepsilon))$ edges suffice to obtain a stretch of $(1+\varepsilon)$, for any small $\varepsilon>0$. This result is essentially tight since there are temporal graphs for which any temporal subgraph preserving exact distances from a single-source must use $Ω(n^2)$ edges. We extend our analysis to prove an upper bound of $\tilde{O}(n^2/β)$ on the size of any temporal $β$-additive spanner, which is tight up to polylogarithmic factors. Finally, we investigate how the lifetime of $G$, i.e., the number of its distinct time-labels, affects the trade-off between the size and the stretch of a temporal spanner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源