论文标题

嘈杂的$ \ ell^{0} $ - 稀疏子空间聚类降低了数据

Noisy $\ell^{0}$-Sparse Subspace Clustering on Dimensionality Reduced Data

论文作者

Yang, Yingzhen, Li, Ping

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Sparse subspace clustering methods with sparsity induced by $\ell^{0}$-norm, such as $\ell^{0}$-Sparse Subspace Clustering ($\ell^{0}$-SSC)~\citep{YangFJYH16-L0SSC-ijcv}, are demonstrated to be more effective than its $\ell^{1}$ counterpart such as Sparse Subspace Clustering (SSC)~\citep{ElhamifarV13}. However, the theoretical analysis of $\ell^{0}$-SSC is restricted to clean data that lie exactly in subspaces. Real data often suffer from noise and they may lie close to subspaces. In this paper, we show that an optimal solution to the optimization problem of noisy $\ell^{0}$-SSC achieves subspace detection property (SDP), a key element with which data from different subspaces are separated, under deterministic and semi-random model. Our results provide theoretical guarantee on the correctness of noisy $\ell^{0}$-SSC in terms of SDP on noisy data for the first time, which reveals the advantage of noisy $\ell^{0}$-SSC in terms of much less restrictive condition on subspace affinity. In order to improve the efficiency of noisy $\ell^{0}$-SSC, we propose Noisy-DR-$\ell^{0}$-SSC which provably recovers the subspaces on dimensionality reduced data. Noisy-DR-$\ell^{0}$-SSC first projects the data onto a lower dimensional space by random projection, then performs noisy $\ell^{0}$-SSC on the projected data for improved efficiency. Experimental results demonstrate the effectiveness of Noisy-DR-$\ell^{0}$-SSC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源