论文标题

使用晶格从高斯来源的最佳限制限制秘密密钥一代

Optimal rate-limited secret key generation from Gaussian sources using lattices

论文作者

Luzzi, Laura, Ling, Cong, Bloch, Matthieu R.

论文摘要

我们在窃听者的存在下为从高斯来源提供了基于晶格的秘密密钥生成计划,并表明它在退化的源模型中实现了强大的秘密关键能力,以及最佳的秘密密钥 /公共通信率折衷。我们方案的关键成分是使用Modulo晶格操作根据平坦度因子的概念以及随机晶格量化技术来提取通道内在的随机性,以量化连续源。与以前的工作相比,我们基于$ l^1 $ decance和kl Divergence介绍了两个新的平坦因素概念,这可能具有独立的兴趣。我们证明了在$ l^1 $距离和吉隆坡差异下的保密良好晶格的存在,其$ l^1 $,kl平整因素消失了量与噪声比率的$2πe$。这对$ l^{\ infty} $平整因子的体积比率阈值$2π$提高。

We propose a lattice-based scheme for secret key generation from Gaussian sources in the presence of an eavesdropper, and show that it achieves the strong secret key capacity in the case of degraded source models, as well as the optimal secret key / public communication rate trade-off. The key ingredients of our scheme are the use of the modulo lattice operation to extract the channel intrinsic randomness, based on the notion of flatness factor, together with a randomized lattice quantization technique to quantize the continuous source. Compared to previous works, we introduce two new notions of flatness factor based on $L^1$ distance and KL divergence, respectively, which might be of independent interest. We prove the existence of secrecy-good lattices under $L^1$ distance and KL divergence, whose $L^1$ and KL flatness factors vanish for volume-to-noise ratios up to $2πe$. This improves upon the volume-to-noise ratio threshold $2π$ of the $L^{\infty}$ flatness factor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源