论文标题

变分量子和量子启发的聚类

Variational Quantum and Quantum-Inspired Clustering

论文作者

Bermejo, Pablo, Orus, Roman

论文摘要

在这里,我们提出了一种基于变异量子电路聚类数据的量子算法。该算法允许将数据分类为许多群集,并且可以轻松地以几量嘈杂的中间尺度量子(NISQ)设备实现。该算法的概念依赖于将聚类问题减少到优化,然后通过差异量子eigensolver(VQE)与非正交量子量状态相结合。实际上,该方法使用目标希尔伯特空间的最大正交状态,而不是通常的计算基础,即使很少有Qubits,也可以考虑大量簇。我们使用真实数据集使用数值模拟对算法进行基准测试,即使有一个单个量子,也可以显示出出色的性能。此外,通过构造,量子化算法的张量网络模拟可以在当前经典硬件上运行的量子启发的聚类算法。

Here we present a quantum algorithm for clustering data based on a variational quantum circuit. The algorithm allows to classify data into many clusters, and can easily be implemented in few-qubit Noisy Intermediate-Scale Quantum (NISQ) devices. The idea of the algorithm relies on reducing the clustering problem to an optimization, and then solving it via a Variational Quantum Eigensolver (VQE) combined with non-orthogonal qubit states. In practice, the method uses maximally-orthogonal states of the target Hilbert space instead of the usual computational basis, allowing for a large number of clusters to be considered even with few qubits. We benchmark the algorithm with numerical simulations using real datasets, showing excellent performance even with one single qubit. Moreover, a tensor network simulation of the algorithm implements, by construction, a quantum-inspired clustering algorithm that can run on current classical hardware.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源