论文标题
关于分散社会图的隐私保护分析:特征成分的案例
Privacy-Preserving Analytics on Decentralized Social Graphs: The Case of Eigendecomposition
论文作者
论文摘要
对社会图的分析可以为许多领域提取宝贵的知识和见解,例如社区发现,欺诈检测和兴趣挖掘。在实践中,经常会出现分散的社交图,其中一个实体无法获得社交图,并且在许多用户中分散了,每个用户都只能对整个图表有有限的本地视图。在分散社会图的分析中收集本地观点会引起关键的隐私问题,因为它们编码有关个人之间社会互动的私人信息。在本文中,我们设计,实施和评估私有系统,这是一种旨在在分散的社会图表上保护隐私分析的新系统。私有的重点是对特征的支持,这是一个受欢迎的和基本的图形分析任务,在社交图的邻接矩阵上产生特征值/特征向量,并受益于各种实际应用。私有的建立是建立在图形分析,轻质加密和差异隐私方面的精致洞察力中建立的,使用户可以在分散的社交图上安全地对基于云的特征eCosposition Analytics服务的分散社会图表,同时获得强大的隐私保护。对现实世界中社交图数据集的广泛实验表明,私有的实现与明文领域相媲美的准确性,实际上实惠的性能优于先前的艺术。
Analytics over social graphs allows to extract valuable knowledge and insights for many fields like community detection, fraud detection, and interest mining. In practice, decentralized social graphs frequently arise, where the social graph is not available to a single entity and is decentralized among a large number of users, each holding only a limited local view about the whole graph. Collecting the local views for analytics of decentralized social graphs raises critical privacy concerns, as they encode private information about the social interactions among individuals. In this paper, we design, implement, and evaluate PrivGED, a new system aimed at privacy-preserving analytics over decentralized social graphs. PrivGED focuses on the support for eigendecomposition, one popular and fundamental graph analytics task producing eigenvalues/eigenvectors over the adjacency matrix of a social graph and benefits various practical applications. PrivGED is built from a delicate synergy of insights on graph analytics, lightweight cryptography, and differential privacy, allowing users to securely contribute their local views on a decentralized social graph for a cloud-based eigendecomposition analytics service while gaining strong privacy protection. Extensive experiments over real-world social graph datasets demonstrate that PrivGED achieves accuracy comparable to the plaintext domain, with practically affordable performance superior to prior art.