论文标题

对生命标志警报的弱监督分类为真实或工件

Weakly Supervised Classification of Vital Sign Alerts as Real or Artifact

论文作者

Dey, Arnab, Goswami, Mononito, Yoon, Joo Heung, Clermont, Gilles, Pinsky, Michael, Hravnak, Marilyn, Dubrawski, Artur

论文摘要

很大一部分临床生理监测警报是错误的。这通常会导致临床人员的警报疲劳,不可避免地会损害患者的安全。为了解决这个问题,研究人员试图构建机器学习(ML)模型,能够准确裁定生命体征(VS)警报在血液动力学监测的患者的床边提出的警报(VS)作为真实或人工制品。先前的研究利用了需要大量手工标记数据的监督ML技术。但是,手动收集此类数据可能是昂贵的,耗时的和平凡的,并且是限制医疗保健中ML广泛采用(HC)的关键因素。取而代之的是,我们探讨了使用多个,单独的启发式方法的使用,以自动将概率标签分配给使用弱监督的未标记培训数据。我们弱监督的模型在传统监督技术中的竞争性竞争性,并且需要较少的领域专家参与,这证明了它们用作ML HC应用中监督学习的有效且实用的替代方案。

A significant proportion of clinical physiologic monitoring alarms are false. This often leads to alarm fatigue in clinical personnel, inevitably compromising patient safety. To combat this issue, researchers have attempted to build Machine Learning (ML) models capable of accurately adjudicating Vital Sign (VS) alerts raised at the bedside of hemodynamically monitored patients as real or artifact. Previous studies have utilized supervised ML techniques that require substantial amounts of hand-labeled data. However, manually harvesting such data can be costly, time-consuming, and mundane, and is a key factor limiting the widespread adoption of ML in healthcare (HC). Instead, we explore the use of multiple, individually imperfect heuristics to automatically assign probabilistic labels to unlabeled training data using weak supervision. Our weakly supervised models perform competitively with traditional supervised techniques and require less involvement from domain experts, demonstrating their use as efficient and practical alternatives to supervised learning in HC applications of ML.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源