论文标题
$ h \下划线{\ mathbb {f}} _ 2 $ - $ C_2 $ - Equivariant Eilenberg-Maclane Space
The $H \underline{\mathbb{F}}_2$-homology of $C_2$-equivariant Eilenberg-MacLane spaces
论文作者
论文摘要
我们将Ravenel-Wilson Hopf Ring技术扩展到$ C_2 $ Equivariant同型理论。我们的主要应用程序和动机是计算$ ro(C_2)$ - 级别同源性的$ C_2 $ - Equivariant Eilenberg-Maclane空间。我们以$ C_2 $ -Equivariant Eilenberg-Maclane的空间与常数Mackey Foundor $ \下划线{\ Mathbb {f}} _ 2 $相关的结果获得了$ C_2 $ -CO_2 $ -Equivariant类似物,因此由于Serre所产生的古典计算。我们还研究了一个扭曲的条形光谱序列,计算这些eRivariant Eilenberg-Maclane空间的同源性,并建议存在另一种扭曲的条光谱序列,该频谱序列具有$ e^2 $ page,该序列根据扭曲的tor functor给出。
We extend Ravenel-Wilson Hopf ring techniques to $C_2$-equivariant homotopy theory. Our main application and motivation is a computation of the $RO(C_2)$-graded homology of $C_2$-equivariant Eilenberg-MacLane spaces. The result we obtain for $C_2$-equivariant Eilenberg-MacLane spaces associated to the constant Mackey functor $\underline{\mathbb{F}}_2$ gives a $C_2$-equivariant analogue of the classical computation due to Serre. We also investigate a twisted bar spectral sequence computing the homology of these equivariant Eilenberg-MacLane spaces and suggest the existence of another twisted bar spectral sequence with $E^2$-page given in terms of a twisted Tor functor.