论文标题
用于安全自动化材料合成的机器视觉检测瓶定位检测
Machine vision for vial positioning detection toward the safe automation of material synthesis
论文作者
论文摘要
尽管化学实验室中基于机器人的自动化可以加速材料开发过程,但无监视的环境可能主要是由于机器控制误差而导致危险事故。对象检测技术可以在解决这些安全问题方面发挥至关重要的作用;但是,最新的检测器,包括单杆检测器(SSD)模型,在涉及复杂和嘈杂场景的环境中的精度不足。为了改善无监视实验室的安全性,我们报告了一种新颖的深度学习(DL)基于对象检测器,即Densessd。对于检测小瓶位置的首要问题和频繁的问题,根据涉及空和溶液填充的小瓶的复杂数据集的平均平均精度(MAP)超过95%,大大超过了传统检测器的平均值。如此高的精度对于最大程度地减少故障引起的事故至关重要。此外,观察到致密的对环境变化高度不敏感,在溶液颜色或测试视图角度的变化下保持其高精度。密集的稳健性将使使用的设备设置更加灵活。这项工作表明,密集是在自动化材料合成环境中提高安全性有用的,并且可以扩展到需要高检测精度和速度的各种应用。
Although robot-based automation in chemistry laboratories can accelerate the material development process, surveillance-free environments may lead to dangerous accidents primarily due to machine control errors. Object detection techniques can play vital roles in addressing these safety issues; however, state-of-the-art detectors, including single-shot detector (SSD) models, suffer from insufficient accuracy in environments involving complex and noisy scenes. With the aim of improving safety in a surveillance-free laboratory, we report a novel deep learning (DL)-based object detector, namely, DenseSSD. For the foremost and frequent problem of detecting vial positions, DenseSSD achieved a mean average precision (mAP) over 95% based on a complex dataset involving both empty and solution-filled vials, greatly exceeding those of conventional detectors; such high precision is critical to minimizing failure-induced accidents. Additionally, DenseSSD was observed to be highly insensitive to the environmental changes, maintaining its high precision under the variations of solution colors or testing view angles. The robustness of DenseSSD would allow the utilized equipment settings to be more flexible. This work demonstrates that DenseSSD is useful for enhancing safety in an automated material synthesis environment, and it can be extended to various applications where high detection accuracy and speed are both needed.