论文标题

Teko:具有外部知识的文本丰富的图形神经网络

TeKo: Text-Rich Graph Neural Networks with External Knowledge

论文作者

Yu, Zhizhi, Jin, Di, Wei, Jianguo, Liu, Ziyang, Shang, Yue, Xiao, Yun, Han, Jiawei, Wu, Lingfei

论文摘要

图形神经网络(GNN)在解决图形结构数据(即网络)方面的各种分析任务方面已广受欢迎。典型的GNN及其变体遵循消息通话方式,该方式通过网络拓扑沿网络拓扑的特征传播过程获得网络表示,然而,它们忽略了许多现实世界网络中存在的丰富文本语义(例如,本地单词序列)。现有的文本丰富网络方法通过主要利用内部信息(例如主题或短语/单词)来整合文本语义,这些信息通常无法全面地挖掘文本语义,从而限制了网络结构和文本语义之间的相互指导。为了解决这些问题,我们提出了一个具有外部知识(TEKO)的新型文本富裕的图形神经网络,以充分利用文本丰富的网络中的结构和文本信息。具体而言,我们首先提出一个灵活的异质语义网络,该网络结合了文档和实体之间的高质量实体和互动。然后,我们介绍两种类型的外部知识,即结构化的三胞胎和非结构化实体描述,以更深入地了解文本语义。我们进一步为构建的异质语义网络设计了相互的卷积机制,使网络结构和文本语义能够协作相互协作并学习高级网络表示。在四个公共文本丰富的网络以及大规模的电子商务搜索数据集上进行了广泛的实验结果,这说明了Teko的优越性能优于最先进的基线。

Graph Neural Networks (GNNs) have gained great popularity in tackling various analytical tasks on graph-structured data (i.e., networks). Typical GNNs and their variants follow a message-passing manner that obtains network representations by the feature propagation process along network topology, which however ignore the rich textual semantics (e.g., local word-sequence) that exist in many real-world networks. Existing methods for text-rich networks integrate textual semantics by mainly utilizing internal information such as topics or phrases/words, which often suffer from an inability to comprehensively mine the text semantics, limiting the reciprocal guidance between network structure and text semantics. To address these problems, we propose a novel text-rich graph neural network with external knowledge (TeKo), in order to take full advantage of both structural and textual information within text-rich networks. Specifically, we first present a flexible heterogeneous semantic network that incorporates high-quality entities and interactions among documents and entities. We then introduce two types of external knowledge, that is, structured triplets and unstructured entity description, to gain a deeper insight into textual semantics. We further design a reciprocal convolutional mechanism for the constructed heterogeneous semantic network, enabling network structure and textual semantics to collaboratively enhance each other and learn high-level network representations. Extensive experimental results on four public text-rich networks as well as a large-scale e-commerce searching dataset illustrate the superior performance of TeKo over state-of-the-art baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源