论文标题

Animesr:学习动画视频的真实世界超分辨率模型

AnimeSR: Learning Real-World Super-Resolution Models for Animation Videos

论文作者

Wu, Yanze, Wang, Xintao, Li, Gen, Shan, Ying

论文摘要

本文研究了动画视频的真实世界视频超分辨率(VSR)的问题,并揭示了实用动画VSR的三个关键改进。首先,最近的现实世界超分辨率方法通常依赖于使用基本运算符的降解模拟,而没有任何学习能力,例如模糊,噪声和压缩。在这项工作中,我们建议从真正的低质量动画视频中学习此类基本操作员,并将学习的操作员纳入降级生成管道中。这种基于神经网络的基本操作员可以帮助更好地捕获实际降解的分布。其次,建立了大型高质量的动画视频数据集AVC,以促进动画VSR的全面培训和评估。第三,我们进一步研究了有效的多尺度网络结构。它利用单向复发网络的效率以及基于滑动窗口的方法的有效性。多亏了上述精致的设计,我们的方法Animesr能够有效,有效地恢复现实世界中的低质量动画视频,从而实现优于以前的最先进方法。代码和模型可在https://github.com/tencentarc/animesr上找到。

This paper studies the problem of real-world video super-resolution (VSR) for animation videos, and reveals three key improvements for practical animation VSR. First, recent real-world super-resolution approaches typically rely on degradation simulation using basic operators without any learning capability, such as blur, noise, and compression. In this work, we propose to learn such basic operators from real low-quality animation videos, and incorporate the learned ones into the degradation generation pipeline. Such neural-network-based basic operators could help to better capture the distribution of real degradations. Second, a large-scale high-quality animation video dataset, AVC, is built to facilitate comprehensive training and evaluations for animation VSR. Third, we further investigate an efficient multi-scale network structure. It takes advantage of the efficiency of unidirectional recurrent networks and the effectiveness of sliding-window-based methods. Thanks to the above delicate designs, our method, AnimeSR, is capable of restoring real-world low-quality animation videos effectively and efficiently, achieving superior performance to previous state-of-the-art methods. Codes and models are available at https://github.com/TencentARC/AnimeSR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源