论文标题
处理数据驱动模型的运行时不确定性的架构模式
Architectural patterns for handling runtime uncertainty of data-driven models in safety-critical perception
论文作者
论文摘要
基于机器学习和其他AI技术的数据驱动模型(DDM)在越来越多自主系统的感知中起着重要作用。由于仅基于用于培训的数据的隐式定义,因此DDM输出可能会出现不确定性。这对通过DDMS实现安全 - 关键感知任务的挑战提出了挑战。解决这一挑战的一种有希望的方法是估计操作过程中当前情况的不确定性,并相应地适应系统行为。在先前的工作中,我们专注于对不确定性的运行时估计,并讨论了处理不确定性估计的方法。在本文中,我们提出了处理不确定性的其他架构模式。此外,我们对安全性和性能提高进行了定性和定量评估的四种模式。对于定量评估,我们考虑了一个用于车辆排的距离控制器,其中通过考虑在不同的操作情况下可以降低距离的距离来衡量性能增长。我们得出的结论是,考虑驾驶状况的上下文信息的考虑使得有可能或多或少地接受不确定性,具体取决于情况的固有风险,从而导致绩效提高。
Data-driven models (DDM) based on machine learning and other AI techniques play an important role in the perception of increasingly autonomous systems. Due to the merely implicit definition of their behavior mainly based on the data used for training, DDM outputs are subject to uncertainty. This poses a challenge with respect to the realization of safety-critical perception tasks by means of DDMs. A promising approach to tackling this challenge is to estimate the uncertainty in the current situation during operation and adapt the system behavior accordingly. In previous work, we focused on runtime estimation of uncertainty and discussed approaches for handling uncertainty estimations. In this paper, we present additional architectural patterns for handling uncertainty. Furthermore, we evaluate the four patterns qualitatively and quantitatively with respect to safety and performance gains. For the quantitative evaluation, we consider a distance controller for vehicle platooning where performance gains are measured by considering how much the distance can be reduced in different operational situations. We conclude that the consideration of context information of the driving situation makes it possible to accept more or less uncertainty depending on the inherent risk of the situation, which results in performance gains.