论文标题

持续使用K-Nearest-neighbor过滤的同源性揭示了Pagerank的拓扑融合

Persistent Homology with k-nearest-neighbor Filtrations reveals Topological Convergence of PageRank

论文作者

Le, Minh Quang, Taylor, Dane

论文摘要

基于图形云数据的基于图的表示,广泛用于数据科学和机器学习中,包括epsilon-graphs,其中包含比Epsilon和Knn-Graphs之间的边缘的边缘,这些数据点与Epsilon和Knn-Graphs相比,将每个点连接到其K-Neareart邻居。最近,拓扑数据分析已成为一种数学和计算技术系列,以使用SimpleCicial Complectes研究数据的拓扑特征。这些是图形的高阶概括,许多技术(例如越野杆)(VR)过滤也被距离Epsilon参数化。在这里,我们开发了KNN复合物作为KNN图的概括,从而导致基于KNN的持续同源技术,我们为此发展了稳定性和收敛结果。我们应用此技术来表征Pagerank的收敛性能,强调了离散拓扑的观点如何补充传统的基于几何的收敛分析。具体而言,我们表明,KNN持久同源性捕获了相对位置(即等级)的收敛性,而与VR过滤的持续同源性与矢量 - 标准收敛相吻合。除了Pagerank之外,基于KNN的持续同源性有望对其他数据科学应用有用,在其他数据科学应用中,数据点的相对定位比其精确位置更重要。

Graph-based representations of point-cloud data are widely used in data science and machine learning, including epsilon-graphs that contain edges between pairs of data points that are nearer than epsilon and kNN-graphs that connect each point to its k-nearest neighbors. Recently, topological data analysis has emerged as a family of mathematical and computational techniques to investigate topological features of data using simplicial complexes. These are a higher-order generalization of graphs and many techniques such as Vietoris-Rips (VR) filtrations are also parameterized by a distance epsilon. Here, we develop kNN complexes as a generalization of kNN graphs, leading to kNN-based persistent homology techniques for which we develop stability and convergence results. We apply this technique to characterize the convergence properties PageRank, highlighting how the perspective of discrete topology complements traditional geometrical-based analyses of convergence. Specifically, we show that convergence of relative positions (i.e., ranks) is captured by kNN persistent homology, whereas persistent homology with VR filtrations coincides with vector-norm convergence. Beyond PageRank, kNN-based persistent homology is expected to be useful to other data-science applications in which the relative positioning of data points is more important than their precise locations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源