论文标题

自然紧张的生命周中有序且可调的Majorana-Zero-Mode晶格

Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs

论文作者

Li, Meng, Li, Geng, Cao, Lu, Zhou, Xingtai, Wang, Xiancheng, Jin, Changqing, Chiu, Ching-Kai, Pennycook, Stephen J., Wang, Ziqiang, Gao, Hong-Jun

论文摘要

Majorana零模式(MZMS)遵守非亚伯统计,被认为是用于构建拓扑量表的基础。具有拓扑带结构的基于铁的超导体已经成为有前途的宿主材料,因为在拓扑涡流核心内已经观察到量子极限中的孤立候选MZM。但是,这些材料遇到了与合金诱导的疾病,不受控制的涡旋晶格和拓扑涡流产量低有关的问题。在这里,我们通过扫描隧道显微镜/光谱法(STM/s)来报告在天然化的化学计量学生命中形成有序可调的MZM晶格。我们观察到沿Fe-FE的双轴电荷密度波(CDW)条纹,并在紧张区域的方向上进行了方向。将涡旋固定在CDW条纹上,并形成有序的晶格。我们检测到超过90%的涡流是拓扑,并具有涡旋中心孤立的MZM的特征,形成了一个有序的MZM晶格,并通过外部磁场的密度和几何形状来调整几何形状。值得注意的是,随着相邻涡流的间距的缩小,MZMS开始彼此彼此。我们的发现为可调和有序的MZM晶格提供了新的途径,作为未来拓扑量子计算的平台。

Majorana zero modes (MZMs) obey non-Abelian statistics and are considered building blocks for constructing topological qubits. Iron-based superconductors with topological band structures have emerged as promising hosting materials, since isolated candidate MZMs in the quantum limit have been observed inside the topological vortex cores. However, these materials suffer from issues related to alloying-induced disorder, uncontrolled vortex lattices and a low yield of topological vortices. Here, we report the formation of an ordered and tunable MZM lattice in naturally-strained stoichiometric LiFeAs by scanning tunneling microscopy/spectroscopy (STM/S). We observe biaxial charge density wave (CDW) stripes along the Fe-Fe and As-As directions in the strained regions. The vortices are pinned on the CDW stripes in the As-As direction and form an ordered lattice. We detect more than 90 percent of the vortices to be topological and possess the characteristics of isolated MZMs at the vortex center, forming an ordered MZM lattice with the density and the geometry tunable by an external magnetic field. Remarkably, with decreasing the spacing of neighboring vortices, the MZMs start to couple with each other. Our findings provide a new pathway towards tunable and ordered MZM lattices as a platform for future topological quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源