论文标题
使用标准化流量的关节流形学习和密度估计
Joint Manifold Learning and Density Estimation Using Normalizing Flows
论文作者
论文摘要
基于多种假设,现实世界中的数据通常位于低维流形上,而将流动作为基于可能性的生成模型的标准化是由于其结构约束而无法找到这种歧管的能力。因此,出现了一个有趣的问题:$ \ textit {“我们可以在标准化流程中找到数据的子字符,并估计子序列上的数据密度吗?”} $。在本文中,我们介绍了两种方法,即每像素的惩罚对数类样和等级培训,以回答上述问题。我们提出了一种单步方法,用于通过将流量标准化为歧管和偏移部分获得的转换空间来进行关节流形学习和密度估计。这是由每像素惩罚的可能性功能来完成数据的,以学习数据的子字节。标准化流程假设转换的数据是高斯化的,但是这种施加的假设不一定是正确的,尤其是在高维度中。为了解决这个问题,采用了一种分层培训方法来改善子序列的密度估计。结果验证了在产生的图像质量和可能性方面使用标准化流的同时流动学习和密度估算中提出方法的优越性。
Based on the manifold hypothesis, real-world data often lie on a low-dimensional manifold, while normalizing flows as a likelihood-based generative model are incapable of finding this manifold due to their structural constraints. So, one interesting question arises: $\textit{"Can we find sub-manifold(s) of data in normalizing flows and estimate the density of the data on the sub-manifold(s)?"}$. In this paper, we introduce two approaches, namely per-pixel penalized log-likelihood and hierarchical training, to answer the mentioned question. We propose a single-step method for joint manifold learning and density estimation by disentangling the transformed space obtained by normalizing flows to manifold and off-manifold parts. This is done by a per-pixel penalized likelihood function for learning a sub-manifold of the data. Normalizing flows assume the transformed data is Gaussianizationed, but this imposed assumption is not necessarily true, especially in high dimensions. To tackle this problem, a hierarchical training approach is employed to improve the density estimation on the sub-manifold. The results validate the superiority of the proposed methods in simultaneous manifold learning and density estimation using normalizing flows in terms of generated image quality and likelihood.