论文标题
通用耐故障量子计算的耐断层电路合成
Fault-tolerant circuit synthesis for universal fault-tolerant quantum computing
论文作者
论文摘要
我们提出了一种基于串联代码实现通用耐断层量子计算的量子电路合成算法。为了实现容忍故障的量子计算,应基于最近的邻居相互作用将容忍故障的量子协议转换为可执行的量子电路。与基于局部操作的拓扑代码从根本上定义了串联代码,可以通过应用量子电路合成来获得由局部操作组成的电路。但是,通过为普通量子计算算法开发的现有量子电路合成,该协议的故障耐受剂可能无法保留在结果电路中。此外,我们必须考虑更多的东西来实现通用耐故障量子计算的量子电路。首先,当选择量子位移动路径(\ emph {swap}门的序列)时,我们不必在数据量量量量子方面传播量子错误,以满足几何局部性约束。其次,该电路应具有独立性,以便无论情况如何,都可以独立行动。第三,对于通用故障量量子计算,我们需要在相同输入(逻辑数据位数)上的多个易耐故障量子协议的多个易耐故障量子电路。最后,我们需要回忆易于故障的协议,例如综合征度量和编码器,隐含地包括以测量结果为条件的经典控制处理,因此必须在时间流中分配量子电路以按照建筑师的意愿执行经典控制。我们提出了解决要求的电路合成方法,并展示了如何以$ [[7,1,3]] $ steane代码和综合征测量协议的$ [23,1,7] $ GOLAY代码合成$ [[7,1,3]] $ steane代码和综合征测量协议的组合集。
We present a quantum circuit synthesis algorithm for implementing universal fault-tolerant quantum computing based on concatenated codes. To realize fault-tolerant quantum computing, the fault-tolerant quantum protocols should be transformed into executable quantum circuits based on the nearest-neighbor interaction. Unlike topological codes that are defined based on local operations fundamentally, for the concatenated codes, it is possible to obtain the circuits composed of the local operations by applying the quantum circuit synthesis. However, by the existing quantum circuit synthesis developed for ordinary quantum computational algorithms, the fault-tolerant of the protocol may not be preserved in the resulting circuit. Besides, we have to consider something more to implement the quantum circuit of universal fault-tolerant quantum computing. First, we have not to propagate quantum errors on data qubits when selecting a qubit move path (a sequence of \emph{SWAP} gates) to satisfy the geometric locality constraint. Second, the circuit should be self-contained so that it is possible to act independently regardless of the situation. Third, for universal fault-tolerant quantum computing, we require multiple fault-tolerant quantum circuits of multiple fault-tolerant quantum protocols acting on the same input, a logical data qubit. Last, we need to recall fault-tolerant protocols such as syndrome measure and encoder implicitly include classical control processing conditioned on the measurement outcomes, and therefore have to partition the quantum circuits in time flow to execute the classical control as the architect intended. We propose the circuit synthesis method resolving the requirements and show how to synthesize the set of universal fault-tolerant protocols for $[[7,1,3]]$ Steane code and the syndrome measurement protocol of $[[23, 1, 7]]$ Golay code.