论文标题
在关键BESOV空间中的多维趋化方程上的不适性问题
Ill-posedness issue on a multidimensional chemotaxis equations in the critical Besov spaces
论文作者
论文摘要
在本文中,我们旨在解决[Nie,Yuan:非线性肛门196(2020)中剩下的开放问题; J. Math。肛门。 Appl 505(2022))和Xiao,FEI:J。Math。肛门。 Appl 514(2022)]。我们证明,多维趋化系统是$ \ dot {b} _ {2d,r}^{ - \ frac { - \ frac {3} {2}}} \ times \ big(\ dot {\ dot {b}当$ 1 \ 1 \ leq r <d $由于解决方案缺乏连续性时。
In this paper, we aim to solving the open question left in [Nie, Yuan: Nonlinear Anal 196 (2020); J. Math. Anal. Appl 505 (2022)) and Xiao, Fei: J. Math. Anal. Appl 514 (2022)]. We prove that a multidimensional chemotaxis system is ill-posedness in $\dot{B}_{2d, r}^{-\frac{3}{2}} \times\big(\dot{B}_{2d, r}^{-\frac{1}{2}}\big)^{d}$ when $1\leq r<d$ due to the lack of continuity of the solution.