论文标题
较高的元素岩川理论,用于椭圆形曲线,超级减少
Higher codimension Iwasawa theory for elliptic curves with supersingular reduction
论文作者
论文摘要
Bleher等。开始研究用于古典伊瓦岛模块的较高的岩泽理论。随后,Lei和Palvannan研究了一个类似物的椭圆形曲线,并减少了超大型曲线。在本文中,我们对雷和巴凡南的工作进行了广泛的概括。关键技术是Bleher等人的工作的一种方法。作者先前提出的。为此,我们还研究了$ \ pm $ -Norm子组的结构和多重签名Selmer组的二元性能。
Bleher et al. began studying higher codimension Iwasawa theory for classical Iwasawa modules. Subsequently, Lei and Palvannan studied an analogue for elliptic curves with supersingular reduction. In this paper, we obtain a vast generalization of the work of Lei and Palvannan. A key technique is an approach to the work of Bleher et al. that the author previously proposed. For this purpose, we also study the structure of $\pm$-norm subgroups and duality properties of multiply-signed Selmer groups.