论文标题

线性MSRD代码具有各种矩阵大小和不受限制的长度

Linear MSRD codes with Various Matrix Sizes and Unrestricted Lengths

论文作者

Chen, Hao

论文摘要

达到单例绑定的总和级金属代码称为最大总和率距离(MSRD)。已为某些参数情况构建了MSRD代码。 In this paper we construct a linear MSRD code over an arbitrary field ${\bf F}_q$ with various matrix sizes $n_1>n_2>\cdots>n_t$ satisfying $n_i \geq n_{i+1}^2+\cdots+n_t^2$ for $i=1, 2, \ldots, t-1$ for any given minimum sum-rank distance.

A sum-rank-metric code attaining the Singleton bound is called maximum sum-rank distance (MSRD). MSRD codes have been constructed for some parameter cases. In this paper we construct a linear MSRD code over an arbitrary field ${\bf F}_q$ with various matrix sizes $n_1>n_2>\cdots>n_t$ satisfying $n_i \geq n_{i+1}^2+\cdots+n_t^2$ for $i=1, 2, \ldots, t-1$ for any given minimum sum-rank distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源