论文标题
半监督医学图像分割的相互和自我原型对齐
Mutual- and Self- Prototype Alignment for Semi-supervised Medical Image Segmentation
论文作者
论文摘要
由于在实际情况下像素级注释缺乏,在医学图像分割任务中已经探索了半监督学习方法。基于原型的一致性一致性约束是一种直观且合理的实用性,可在未标记的数据中探索有用的信息。在本文中,我们提出了一个相互和自我原型比对(MSPA)框架,以更好地利用未标记的数据。在特定的情况下,相互型的比对增强了标记数据和未标记数据之间的信息相互作用。相互构想对齐对未标记和标记的数据之间的相反方向施加了两个一致性约束,这使得无标记数据的一致嵌入和模型可区分性。所提出的自我构想对齐方式在未标记的图像中学习了更稳定的区域特征,该特征通过在特征空间上提高阶层内的紧凑性和类间的分离来优化半监视分割中的分类余量。三个医疗数据集的广泛实验结果表明,使用少量的标记数据,MSPA通过利用未标记的数据来实现很大的改进。我们的方法还优于所有三个数据集上的七个最先进的半监督分割方法。
Semi-supervised learning methods have been explored in medical image segmentation tasks due to the scarcity of pixel-level annotation in the real scenario. Proto-type alignment based consistency constraint is an intuitional and plausible solu-tion to explore the useful information in the unlabeled data. In this paper, we propose a mutual- and self- prototype alignment (MSPA) framework to better utilize the unlabeled data. In specific, mutual-prototype alignment enhances the information interaction between labeled and unlabeled data. The mutual-prototype alignment imposes two consistency constraints in reverse directions between the unlabeled and labeled data, which enables the consistent embedding and model discriminability on unlabeled data. The proposed self-prototype alignment learns more stable region-wise features within unlabeled images, which optimizes the classification margin in semi-supervised segmentation by boosting the intra-class compactness and inter-class separation on the feature space. Extensive experimental results on three medical datasets demonstrate that with a small amount of labeled data, MSPA achieves large improvements by leveraging the unlabeled data. Our method also outperforms seven state-of-the-art semi-supervised segmentation methods on all three datasets.