论文标题
对抗性原始:针对成像管道的图像尺度攻击
Adversarial RAW: Image-Scaling Attack Against Imaging Pipeline
论文作者
论文摘要
深度学习技术已成为开发计算机视觉的骨干。通过进一步的探索,发现深度神经网络很容易受到精心设计的对抗性攻击。大多数视觉设备都配备了图像信号处理(ISP)管道,以实现原始-RGB转换,并嵌入到数据预处理模块中,以进行有效的图像处理。实际上,ISP管道可以将对抗性行为引入捕获后图像,而数据预处理可能会破坏攻击模式。但是,现有的对抗性攻击都没有考虑ISP管道和数据预处理的影响。在本文中,我们在ISP管道上开发了针对ISP管道的图像尺度攻击,在该攻击中,可以将精心设计的对抗原始生物转换为攻击图像,一旦将其缩放到特定尺寸的图像,就会显示出完全不同的外观。我们首先考虑梯度可用的ISP管道,即可以直接在对抗RAW的生成过程中使用梯度信息来启动攻击。为了使对抗性攻击更加适用,我们进一步考虑了梯度不可存放的ISP管道,在该管道中,提出了一个很好地了解原始rgb转换的代理模型作为梯度甲壳。广泛的实验表明,拟议的对抗攻击可以针对具有高攻击率的目标ISP管道制作对抗性原始数据。
Deep learning technologies have become the backbone for the development of computer vision. With further explorations, deep neural networks have been found vulnerable to well-designed adversarial attacks. Most of the vision devices are equipped with image signal processing (ISP) pipeline to implement RAW-to-RGB transformations and embedded into data preprocessing module for efficient image processing. Actually, ISP pipeline can introduce adversarial behaviors to post-capture images while data preprocessing may destroy attack patterns. However, none of the existing adversarial attacks takes into account the impacts of both ISP pipeline and data preprocessing. In this paper, we develop an image-scaling attack targeting on ISP pipeline, where the crafted adversarial RAW can be transformed into attack image that presents entirely different appearance once being scaled to a specific-size image. We first consider the gradient-available ISP pipeline, i.e., the gradient information can be directly used in the generation process of adversarial RAW to launch the attack. To make the adversarial attack more applicable, we further consider the gradient-unavailable ISP pipeline, in which a proxy model that well learns the RAW-to-RGB transformations is proposed as the gradient oracles. Extensive experiments show that the proposed adversarial attacks can craft adversarial RAW data against the target ISP pipelines with high attack rates.