论文标题

$ 2 \ times2 $正方形的随机包装柱订单在方格上

Columnar order in random packings of $2\times2$ squares on the square lattice

论文作者

Hadas, Daniel, Peled, Ron

论文摘要

我们研究了$ 2 \ times2 $正方形的随机包装,在方格$ \ mathbb {z}^{2} $上,填料的可能性与$λ$与平方数的数量成正比。我们证明,对于大$λ$,典型的包装展示了柱状订单,其中大多数瓷砖的中心都同意其$ x $ - 坐标的均等或大多数瓷砖中心的均等,或者大多数瓷砖的中心都同意其$ y $ - 坐标的奇偶校验。这表现在存在四个极端和周期性的吉布斯测量中,其中晶格的旋转对称性被损坏,而翻译对称性仅沿单个轴线损坏。我们进一步量化了这些度量中相关性的衰减,从而在保留的翻译对称性方向上获得了缓慢的指数衰减速率,并且在破裂的转化对称性方向上的快速速率。最后,我们证明每个周期性的吉布斯度量都是这四种措施的混合物。 此外,我们的证明引入了棋盘估算的明显新颖的扩展,从有限体积的圆环测量到所有无限体积的周期性Gibbs测量。

We study random packings of $2\times2$ squares with centers on the square lattice $\mathbb{Z}^{2}$, in which the probability of a packing is proportional to $λ$ to the number of squares. We prove that for large $λ$, typical packings exhibit columnar order, in which either the centers of most tiles agree on the parity of their $x$-coordinate or the centers of most tiles agree on the parity of their $y$-coordinate. This manifests in the existence of four extremal and periodic Gibbs measures in which the rotational symmetry of the lattice is broken while the translational symmetry is only broken along a single axis. We further quantify the decay of correlations in these measures, obtaining a slow rate of exponential decay in the direction of preserved translational symmetry and a fast rate in the direction of broken translational symmetry. Lastly, we prove that every periodic Gibbs measure is a mixture of these four measures. Additionally, our proof introduces an apparently novel extension of the chessboard estimate, from finite-volume torus measures to all infinite-volume periodic Gibbs measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源