论文标题
一维量子多体系统中的倾斜边界条件和响应
Energy-twisted boundary condition and response in one-dimensional quantum many-body systems
论文作者
论文摘要
传统上,冷凝物质系统中的热传输作为对背景重力场的响应。在这项工作中,我们寻求一种扭曲的条件形式主义,以类似于$ u(1)$ twisted边界条件的热运输。具体而言,使用转移矩阵形式主义,我们介绍了所谓的扭动边界条件,并研究系统对边界条件的响应。作为具体示例,我们获得了(1+1)二维CFT的热Meissner刚度,ISING模型和无序的费米昂模型。我们还将集成系统的增强变形视为倾斜边界条件的大量对应物。我们表明,可以通过求解Inviscid汉堡方程来明确求解自由费米链的增强变形。我们还通过研究增压成型的Bethe Ansatz方程来讨论XXZ模型及其非线性热量重量的增强变形。
Thermal transport in condensed matter systems is traditionally formulated as a response to a background gravitational field. In this work, we seek a twisted-boundary-condition formalism for thermal transport in analogy to the $U(1)$ twisted boundary condition for electrical transport. Specifically, using the transfer matrix formalism, we introduce what we call the energy-twisted boundary condition, and study the response of the system to the boundary condition. As specific examples, we obtain the thermal Meissner stiffness of (1+1)-dimensional CFT, the Ising model, and disordered fermion models. We also identify the boost deformation of integrable systems as a bulk counterpart of the energy-twisted boundary condition. We show that the boost deformation of the free fermion chain can be solved explicitly by solving the inviscid Burgers equation. We also discuss the boost deformation of the XXZ model, and its nonlinear thermal Drude weights, by studying the boost-deformed Bethe ansatz equations.