论文标题

弹性蒙特卡洛树搜索与状态抽象进行战略游戏

Elastic Monte Carlo Tree Search with State Abstraction for Strategy Game Playing

论文作者

Xu, Linjie, Hurtado-Grueso, Jorge, Jeurissen, Dominic, Liebana, Diego Perez, Dockhorn, Alexander

论文摘要

策略视频游戏挑战AI代理,其组合搜索空间由复杂的游戏元素引起。状态抽象是一种流行的技术,可降低状态空间的复杂性。但是,当前的游戏状态抽象方法取决于域知识,使他们在新游戏中的应用昂贵。在规划域中广泛研究了不需要领域知识的状态抽象方法。但是,没有证据表明它们随策略游戏的复杂性而良好的扩展。在本文中,我们提出了弹性MCT,这是一种使用状态抽象来玩策略游戏的算法。在弹性MCT中,树的节点被动态聚集,首先通过状态抽象逐渐组合在一起,然后在达到迭代阈值时分离。弹性变化受益于国家抽象带来的有效搜索,但避免使用状态抽象进行整个搜索的负面影响。为了评估我们的方法,我们利用一般战略游戏平台策略来生成各种复杂性的方案。结果表明,弹性MCTS的优于MCTS基线的幅度很大,同时将树大小降低了$ 10 $。代码可以在以下网址找到:https://github.com/egg-west/stratega

Strategy video games challenge AI agents with their combinatorial search space caused by complex game elements. State abstraction is a popular technique that reduces the state space complexity. However, current state abstraction methods for games depend on domain knowledge, making their application to new games expensive. State abstraction methods that require no domain knowledge are studied extensively in the planning domain. However, no evidence shows they scale well with the complexity of strategy games. In this paper, we propose Elastic MCTS, an algorithm that uses state abstraction to play strategy games. In Elastic MCTS, the nodes of the tree are clustered dynamically, first grouped together progressively by state abstraction, and then separated when an iteration threshold is reached. The elastic changes benefit from efficient searching brought by state abstraction but avoid the negative influence of using state abstraction for the whole search. To evaluate our method, we make use of the general strategy games platform Stratega to generate scenarios of varying complexity. Results show that Elastic MCTS outperforms MCTS baselines with a large margin, while reducing the tree size by a factor of $10$. Code can be found at: https://github.com/egg-west/Stratega

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源