论文标题

冲击驱动湍流的驾驶方式

The driving mode of shock-driven turbulence

论文作者

Dhawalikar, Saee, Federrath, Christoph, Davidovits, Seth, Teyssier, Romain, Nagel, Sabrina R., Remington, Bruce A., Collins, David C.

论文摘要

星际介质(ISM)中的湍流在恒星形成过程中至关重要。由超新星爆炸,喷气机,巨大恒星辐射或银河螺旋臂动力学产生的冲击是ISM中最常见的湍流驱动因素之一。但是,尚不完全了解冲击驱动湍流的方式,特别是冲击驱动是更螺旋螺旋射(旋转,无散发)还是更紧缩的(潜在的,无卷曲的)驱动湍流模式。湍流驱动的模式对恒星形成产生了深远的后果,压缩驱动的密度分散剂的三倍,而恒星形成速率的比螺线管驱动率高。在这里,我们使用在结构化的多相培养基中诱发湍流运动的流体动力学模拟。这是在激光引起的冲击的背景下进行的,并繁殖成泡沫材料,以准备在国家点火设施(NIF)进行实验。具体而言,我们分析了电击湍流介质中的密度和速度分布,并测量湍流驱动参数$ b =(σ^{2γ} _ {ρ/\ langleρ\ rangle} -1)^{1- = {1-ρ\ langle langle} -1-ρ\ langle Langle} ρ\ rangle}^{ - 2})^{ - 1/2} \ Mathcal {m}^{ - 1}γ^{ - 1/2} $带有密度分散$σ_{ρ/\ρ/\ langleρ\ rangle} $,驱动的$ \ $ $ \ $ \ $ \ $ \ $ \ $ \ $ \ $ \ mathcal和polothcal $ $ \ ym {m纯螺旋桨和纯粹的压缩驾驶分别对应于$ b \ sim 1/3 $和$ b \ sim 1 $。使用模拟,将冲击驱动到具有不同尺寸和$γ<1 $的结构的多相介质中,我们发现所有情况下的$ b \ sim 1 $,表明冲击驱动的湍流与强烈的抗压驾驶一致。

Turbulence in the interstellar medium (ISM) is crucial in the process of star formation. Shocks produced by supernova explosions, jets, radiation from massive stars, or galactic spiral-arm dynamics are amongst the most common drivers of turbulence in the ISM. However, it is not fully understood how shocks drive turbulence, in particular whether shock driving is a more solenoidal(rotational, divergence-free) or a more compressive (potential, curl-free) mode of driving turbulence. The mode of turbulence driving has profound consequences for star formation, with compressive driving producing three times larger density dispersion, and an order of magnitude higher star formation rate than solenoidal driving. Here, we use hydrodynamical simulations of a shock inducing turbulent motions in a structured, multi-phase medium. This is done in the context of a laser-induced shock, propagating into a foam material, in preparation for an experiment to be performed at the National Ignition Facility (NIF). Specifically, we analyse the density and velocity distributions in the shocked turbulent medium, and measure the turbulence driving parameter $b=(σ^{2 Γ}_{ρ/\langle ρ\rangle}-1)^{1/2} (1-σ_{ρ\langle ρ\rangle}^{-2})^{-1/2}\mathcal{M}^{-1}Γ^{-1/2}$ with the density dispersion $σ_{ρ/ \langle ρ\rangle}$, the turbulent Mach number $\mathcal{M}$, and the polytropic exponent $Γ$. Purely solenoidal and purely compressive driving correspond to $b \sim 1/3$ and $b \sim 1$, respectively. Using simulations in which a shock is driven into a multi-phase medium with structures of different sizes and $Γ< 1$, we find $b \sim 1$ for all cases, showing that shock-driven turbulence is consistent with strongly compressive driving.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源