论文标题

机器学习的交换相关功能的确切限制和适当的规范

Exact constraints and appropriate norms in machine learned exchange-correlation functionals

论文作者

Pokharel, Kanun, Furness, James W., Yao, Yi, Blum, Volker, Irons, Tom J. P., Teale, Andrew M., Sun, Jianwei

论文摘要

机器学习技术已受到越来越多的关注,作为开发通用密度功能近似值的替代策略,增强了人类设计的功能的历史成功方法,这些功能是为了遵守以确切的交换相关功能而闻名的数学约束。最近,已经努力调和两种技术,集成机器学习和确切的构成满意度。我们继续这种综合方法,设计了一个深层的神经网络,该网络利用了确切的约束和适当的规范理念,从而消除了强烈的约束和适当规范的扫描功能。训练了深度神经网络,以复制仅电子密度和局部衍生信息的扫描功能,避免使用轨道依赖的动能密度。用于分子和周期系统的机器学习功能的性能和可传递性。

Machine learning techniques have received growing attention as an alternative strategy for developing general-purpose density functional approximations, augmenting the historically successful approach of human designed functionals derived to obey mathematical constraints known for the exact exchange-correlation functional. More recently efforts have been made to reconcile the two techniques, integrating machine learning and exact-constraint satisfaction. We continue this integrated approach, designing a deep neural network that exploits the exact constraint and appropriate norm philosophy to deorbitalize the strongly constrained and appropriately normed SCAN functional. The deep neural network is trained to replicate the SCAN functional from only electron density and local derivative information, avoiding use of the orbital dependent kinetic energy density. The performance and transferability of the machine learned functional are demonstrated for molecular and periodic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源