论文标题
迈向多样化和自然的场景 - 感知3D人类运动综合
Towards Diverse and Natural Scene-aware 3D Human Motion Synthesis
论文作者
论文摘要
在实际场景中综合长期人类运动序列的能力可以促进众多应用。场景感知运动合成的先前方法受到预定义的目标对象或位置的限制,因此限制了合成动作的人类场景相互作用的多样性。在本文中,我们着重于在目标动作序列的指导下综合各种场景 - 意识到人类动作的问题。为了实现这一目标,我们首先将场景感知的人类动作的多样性分解为三个方面,即相互作用的多样性(例如,坐在给定场景中不同姿势的不同物体上),路径多样性(例如,按照不同的路径移动到目标位置)以及运动多样性(例如,运动过程中都有各种身体运动)。基于此分解方案,提出了一个分层框架,每个子模块负责对一个方面进行建模。我们评估了框架对两个具有挑战性的数据集的有效性,以进行场景 - 意识到人类运动综合。实验结果表明,所提出的框架在多样性和自然性方面明显胜过以前的方法。
The ability to synthesize long-term human motion sequences in real-world scenes can facilitate numerous applications. Previous approaches for scene-aware motion synthesis are constrained by pre-defined target objects or positions and thus limit the diversity of human-scene interactions for synthesized motions. In this paper, we focus on the problem of synthesizing diverse scene-aware human motions under the guidance of target action sequences. To achieve this, we first decompose the diversity of scene-aware human motions into three aspects, namely interaction diversity (e.g. sitting on different objects with different poses in the given scenes), path diversity (e.g. moving to the target locations following different paths), and the motion diversity (e.g. having various body movements during moving). Based on this factorized scheme, a hierarchical framework is proposed, with each sub-module responsible for modeling one aspect. We assess the effectiveness of our framework on two challenging datasets for scene-aware human motion synthesis. The experiment results show that the proposed framework remarkably outperforms previous methods in terms of diversity and naturalness.