论文标题
ER检验:评估语言模型的说明正规化方法
ER-Test: Evaluating Explanation Regularization Methods for Language Models
论文作者
论文摘要
通过解释人类将如何解决给定的任务,人类的理由可以为神经语言模型(LMS)提供强大的学习信号。解释正则化(ER)旨在通过推动LM的机器原理(LM专注于?)来改善LM的概括,以与人类的理由保持一致(人类将关注哪些输入令牌?)。尽管先前的工作主要是通过分布(ID)评估来研究ER,但是在现实世界中,分布(OOD)的概括通常更为关键,但是ER对OOD概括的影响并没有得到充实。在本文中,我们介绍了ER检验,这是一个用于评估ER模型沿三个维度的OOD概括的框架:看不见的数据集测试,对比度集测试和功能测试。使用ER检验,我们广泛分析了ER模型的OOD概括如何随着不同的设计选择而变化。在两个任务和六个数据集中,ER检验表明,ER对ID性能的影响很小,但可以产生较大的OOD性能提高。此外,我们发现即使有限的理由监督,ER也可以提高OOD的性能。 ER检验的结果有助于证明ER的实用性,并为有效使用ER建立最佳实践。
By explaining how humans would solve a given task, human rationales can provide strong learning signal for neural language models (LMs). Explanation regularization (ER) aims to improve LM generalization by pushing the LM's machine rationales (Which input tokens did the LM focus on?) to align with human rationales (Which input tokens would humans focus on?). Though prior works primarily study ER via in-distribution (ID) evaluation, out-of-distribution (OOD) generalization is often more critical in real-world scenarios, yet ER's effect on OOD generalization has been underexplored. In this paper, we introduce ER-Test, a framework for evaluating ER models' OOD generalization along three dimensions: unseen dataset tests, contrast set tests, and functional tests. Using ER-Test, we extensively analyze how ER models' OOD generalization varies with different ER design choices. Across two tasks and six datasets, ER-Test shows that ER has little impact on ID performance but can yield large OOD performance gains. Also, we find that ER can improve OOD performance even with limited rationale supervision. ER-Test's results help demonstrate ER's utility and establish best practices for using ER effectively.