论文标题

FBNETGEN:通过功能性脑网络生成基于任务感知GNN的fMRI分析

FBNETGEN: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation

论文作者

Kan, Xuan, Cui, Hejie, Lukemire, Joshua, Guo, Ying, Yang, Carl

论文摘要

功能磁共振成像(fMRI)是研究大脑功能的最常见成像方式之一。神经科学的最新研究强调了fMRI数据构建的功能性脑网络的巨大潜力,以进行临床预测。但是,传统的功能性大脑网络是嘈杂的,并且不知道下游预测任务,而与深图神经网络(GNN)模型也不兼容。为了完全释放GNN在基于网络的fMRI分析中的功能,我们开发了FBNETGEN,这是通过深脑网络生成的任务感知和可解释的fMRI分析框架。特别是,我们在特定预测任务的指导下,在端到端可训练的模型中,在端到端可训练的模型中,(3)使用GNNS的临床预测提取的重要区域(ROI)(ROI)具有提取,(2)大脑网络的产生和(3)临床预测。随着过程,关键的新颖组件是图形生成器,它学会了将原始的时间序列特征转换为面向任务的大脑网络。我们的可学习图还通过突出预测相关的大脑区域来提供独特的解释。在两个数据集(即最近发布且目前最大的公开可用的fMRI数据集青少年脑认知发展(ABCD)以及广泛使用的FMRI数据集PNC)上进行的全面实验证明了FBNETGEN的优势和解释性。该实现可在https://github.com/wayfear/fbnetgen上获得。

Functional magnetic resonance imaging (fMRI) is one of the most common imaging modalities to investigate brain functions. Recent studies in neuroscience stress the great potential of functional brain networks constructed from fMRI data for clinical predictions. Traditional functional brain networks, however, are noisy and unaware of downstream prediction tasks, while also incompatible with the deep graph neural network (GNN) models. In order to fully unleash the power of GNNs in network-based fMRI analysis, we develop FBNETGEN, a task-aware and interpretable fMRI analysis framework via deep brain network generation. In particular, we formulate (1) prominent region of interest (ROI) features extraction, (2) brain networks generation, and (3) clinical predictions with GNNs, in an end-to-end trainable model under the guidance of particular prediction tasks. Along with the process, the key novel component is the graph generator which learns to transform raw time-series features into task-oriented brain networks. Our learnable graphs also provide unique interpretations by highlighting prediction-related brain regions. Comprehensive experiments on two datasets, i.e., the recently released and currently largest publicly available fMRI dataset Adolescent Brain Cognitive Development (ABCD), and the widely-used fMRI dataset PNC, prove the superior effectiveness and interpretability of FBNETGEN. The implementation is available at https://github.com/Wayfear/FBNETGEN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源