论文标题
Divemt:神经机器翻译跨类型多种语言的邮政编辑工作
DivEMT: Neural Machine Translation Post-Editing Effort Across Typologically Diverse Languages
论文作者
论文摘要
我们介绍了Divemt,这是对类型上多样化的目标语言集对神经机器翻译(NMT)的首次公开编辑后的研究。使用严格控制的设置,指示18名专业翻译人员将相同的英语文档翻译或后编辑为阿拉伯语,荷兰语,意大利语,土耳其语,乌克兰和越南语。在此过程中,记录了它们的编辑,击键,编辑时间和暂停,从而对NMT质量和编辑后效率进行了深入的跨语性评估。使用此新数据集,我们评估了两个最先进的NMT系统,Google Translate和多语言MBART-50模型对翻译生产率的影响。我们发现,文章始终比从头开始的翻译要快。但是,生产率的幅度在系统和语言之间的幅度差异很大,即使在控制系统体系结构和培训数据大小时,也强调了与英语不同程度的类型学相关性的语言的主要差异。我们公开发布完整的数据集,包括所有收集的行为数据,以促进有关类型上不同语言的NMT系统翻译功能的新研究。
We introduce DivEMT, the first publicly available post-editing study of Neural Machine Translation (NMT) over a typologically diverse set of target languages. Using a strictly controlled setup, 18 professional translators were instructed to translate or post-edit the same set of English documents into Arabic, Dutch, Italian, Turkish, Ukrainian, and Vietnamese. During the process, their edits, keystrokes, editing times and pauses were recorded, enabling an in-depth, cross-lingual evaluation of NMT quality and post-editing effectiveness. Using this new dataset, we assess the impact of two state-of-the-art NMT systems, Google Translate and the multilingual mBART-50 model, on translation productivity. We find that post-editing is consistently faster than translation from scratch. However, the magnitude of productivity gains varies widely across systems and languages, highlighting major disparities in post-editing effectiveness for languages at different degrees of typological relatedness to English, even when controlling for system architecture and training data size. We publicly release the complete dataset including all collected behavioral data, to foster new research on the translation capabilities of NMT systems for typologically diverse languages.