论文标题

$ n_e = c_ \ infty $中的半灵聚合物眼镜中的意外延展性

Unexpected ductility in semiflexible polymer glasses with $N_e = C_\infty$

论文作者

Dietz, Joseph D., Nan, Kai, Hoy, Robert S.

论文摘要

半粘的聚合物玻璃(SPG),包括最近合成的半缀合的共轭聚合物(SCP)形成的,预计会很脆弱,因为其狂热扩展比$λ_{\ rm狂热} $的经典配方和$λ__{ $λ_ {\ rm狂热} =λ_ {\ rm frac} = 1 $,因此不能变形为大菌株。使用分子动力学模拟,我们表明,实际上,这样的眼镜可以用$λ_{\ rm狂热} \ simeq n_e^{1/4} \ simeq c_ \ infty^{1/4} $,并且它们以$λ__{1/2} - \ rm frac} - 3N}^^^n- 2)^{1/2} \ simeq(3c_ \ infty^{1/2} -2)^{1/2} $。我们认为,$λ_{\ rm狂热} $和$λ_ {\ rm frac} $的经典公式无法描述SPGS的机械响应,因为它们不考虑Kuhn segments在变形过程中伸展的能力。

Semiflexible polymer glasses (SPGs), including those formed by the recently synthesized semiflexible conjugated polymers (SCPs), are expected to be brittle because classical formulas for their craze extension ratio $λ_{\rm craze}$ and fracture stretch $λ_{\rm frac}$ predict that systems with $N_e = C_\infty$ have $λ_{\rm craze} = λ_{\rm frac} = 1$ and hence cannot be deformed to large strains. Using molecular dynamics simulations, we show that in fact such glasses can form stable crazes with $λ_{\rm craze} \simeq N_e^{1/4} \simeq C_\infty^{1/4}$, and that they fracture at $λ_{\rm frac} = (3N_e^{1/2} - 2)^{1/2} \simeq (3C_\infty^{1/2} - 2)^{1/2}$. We argue that the classical formulas for $λ_{\rm craze}$ and $λ_{\rm frac}$ fail to describe SPGs' mechanical response because they do not account for Kuhn segments' ability to stretch during deformation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源