论文标题
全态异构体到均质有界域
Holomorphic isometries into homogeneous bounded domains
论文作者
论文摘要
我们证明了在均匀界面域上的圆锥形异构体上的两个刚性定理。第一个表明,由均质有限域的均质度量引起的kähler-ricci soliton是微不足道的,即kähler-einstein。在第二个方面,我们证明了均匀的界面和平坦(确定或不确定的)复杂的欧几里得空间不是亲戚,即它们不具有共同的Kähler子手机(正尺寸)。我们的定理扩展了[A. Loi,R。Mossa,Proc。阿米尔。数学。 Soc。 149(2021),否。 11,4931-4941]和[X. Cheng,Y。Hao,Ann。全球肛门。地理。 60(2021),否。 1,167-180]。
We prove two rigidity theorems on holomorphic isometries into homogeneous bounded domains. The first shows that a Kähler-Ricci soliton induced by the homogeneous metric of a homogeneous bounded domain is trivial, i.e. Kähler-Einstein. In the second one we prove that a homogeneous bounded domain and the flat (definite or indefinite) complex Euclidean space are not relatives, i.e. they do not share a common Kähler submanifold (of positive dimension). Our theorems extend the results proved in [A. Loi, R. Mossa, Proc. Amer. Math. Soc. 149 (2021), no. 11, 4931-4941] and [X. Cheng, Y. Hao, Ann. Global Anal. Geom. 60 (2021), no. 1, 167-180] respectively.