论文标题

使用机器学习对从破碎的动物骨头的3D模型提取的新功能集进行分类,根据Break Agent

Using machine learning on new feature sets extracted from 3D models of broken animal bones to classify fragments according to break agent

论文作者

Yezzi-Woodley, Katrina, Terwilliger, Alexander, Li, Jiafeng, Chen, Eric, Tappen, Martha, Calder, Jeff, Olver, Peter J.

论文摘要

在古人类学遗址区分骨修饰的药物是许多研究的根源,该研究旨在理解早期人类对大动物资源的剥削,以及这些生存行为对早期人类进化的影响。但是,当前的方法,特别是在断裂模式分析的领域作为骨髓开发的信号,未能克服等级性。此外,研究人员讨论了分析骨修饰的当前和新兴方法的可复制性和有效性。在这里,我们提出了一种新的方法来进行断裂模式分析,旨在区分由人类骨破裂和食肉动物产生的骨碎片。这种新方法使用碎片骨的3D模型来提取比以前在裂缝模式分析中使用的特征集更透明和可复制的数据集。根据断裂剂的平均平均准确性为77%,监督的机器学习算法适当地用于对骨碎片进行分类。

Distinguishing agents of bone modification at paleoanthropological sites is at the root of much of the research directed at understanding early hominin exploitation of large animal resources and the effects those subsistence behaviors had on early hominin evolution. However, current methods, particularly in the area of fracture pattern analysis as a signal of marrow exploitation, have failed to overcome equifinality. Furthermore, researchers debate the replicability and validity of current and emerging methods for analyzing bone modifications. Here we present a new approach to fracture pattern analysis aimed at distinguishing bone fragments resulting from hominin bone breakage and those produced by carnivores. This new method uses 3D models of fragmentary bone to extract a much richer dataset that is more transparent and replicable than feature sets previously used in fracture pattern analysis. Supervised machine learning algorithms are properly used to classify bone fragments according to agent of breakage with average mean accuracy of 77% across tests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源