论文标题

测试预测性自动驾驶系统:经验教训和未来建议

Testing predictive automated driving systems: lessons learned and future recommendations

论文作者

Gonzalo, Rubén Izquierdo, Maldonado, Carlota Salinas, Ruiz, Javier Alonso, Alonso, Ignacio Parra, Llorca, David Fernández, Sotelo, Miguel Á.

论文摘要

常规车辆通过经典方法进行认证,在测试轨道上设置了不同的物理认证测试,以评估所需的安全水平。这些方法非常适合具有有限复杂性且与其他实体相互作用有限的车辆作为最后一秒的资源。但是,这些方法不允许对关键和边缘案例的真实行为评估安全性,也不可以评估在中期或长期内预测它们的能力。这与自动化和自主驾驶功能特别相关,这些功能利用先进的预测系统来预测路径计划层中要考虑的未来动作和动议。在本文中,我们介绍并分析了在勇敢项目框架内开发的自动驾驶功能中几个预测系统的验证基础的物理测试结果。根据我们在测试预测性自动驾驶功能方面的经验,我们在处理预测系统时确定当前物理测试方法的主要局限性,分析未来的主要挑战,并提供一系列实用措施和建议,以在未来的自动化和自动驾驶功能的物理测试程序中考虑。

Conventional vehicles are certified through classical approaches, where different physical certification tests are set up on test tracks to assess required safety levels. These approaches are well suited for vehicles with limited complexity and limited interactions with other entities as last-second resources. However, these approaches do not allow to evaluate safety with real behaviors for critical and edge cases, nor to evaluate the ability to anticipate them in the mid or long term. This is particularly relevant for automated and autonomous driving functions that make use of advanced predictive systems to anticipate future actions and motions to be considered in the path planning layer. In this paper, we present and analyze the results of physical tests on proving grounds of several predictive systems in automated driving functions developed within the framework of the BRAVE project. Based on our experience in testing predictive automated driving functions, we identify the main limitations of current physical testing approaches when dealing with predictive systems, analyze the main challenges ahead, and provide a set of practical actions and recommendations to consider in future physical testing procedures for automated and autonomous driving functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源