论文标题

降解意识到频谱压缩成像的降解半剃须变压器

Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral Compressive Imaging

论文作者

Cai, Yuanhao, Lin, Jing, Wang, Haoqian, Yuan, Xin, Ding, Henghui, Zhang, Yulun, Timofte, Radu, Van Gool, Luc

论文摘要

在编码的光圈快照光谱压缩成像(CASSI)系统中,采用高光谱图像(HSI)重建方法从压缩测量中恢复了空间 - 光谱信号。在这些算法中,深层展开的方法表现出了有希望的表现,但遭受了两个问题的困扰。首先,他们没有从高度相关的卡西(Cassi)估计降解模式和不适合性的程度来指导迭代学习。其次,它们主要基于CNN,显示出捕获长期依赖性的局限性。在本文中,我们提出了一个原则性的退化感知框架(DAUF),该框架(DAUF)从压缩图像和物理掩码中估算参数,然后使用这些参数来控制每个迭代。此外,我们自定义了一种新颖的半剃须变压器(HST),同时捕获本地内容和非本地依赖性。通过将HST插入DAUF,我们为HSI重建建立了第一个基于变压器的深层展开方法,即降解 - 降解 - 降解的半剃须变压器(DAUHST)。实验表明,Dauhst显着超过了最新方法,同时需要廉价的计算和存储成本。代码和模型将在https://github.com/caiyuanhao1998/mst上发布

In coded aperture snapshot spectral compressive imaging (CASSI) systems, hyperspectral image (HSI) reconstruction methods are employed to recover the spatial-spectral signal from a compressed measurement. Among these algorithms, deep unfolding methods demonstrate promising performance but suffer from two issues. Firstly, they do not estimate the degradation patterns and ill-posedness degree from the highly related CASSI to guide the iterative learning. Secondly, they are mainly CNN-based, showing limitations in capturing long-range dependencies. In this paper, we propose a principled Degradation-Aware Unfolding Framework (DAUF) that estimates parameters from the compressed image and physical mask, and then uses these parameters to control each iteration. Moreover, we customize a novel Half-Shuffle Transformer (HST) that simultaneously captures local contents and non-local dependencies. By plugging HST into DAUF, we establish the first Transformer-based deep unfolding method, Degradation-Aware Unfolding Half-Shuffle Transformer (DAUHST), for HSI reconstruction. Experiments show that DAUHST significantly surpasses state-of-the-art methods while requiring cheaper computational and memory costs. Code and models will be released at https://github.com/caiyuanhao1998/MST

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源