论文标题
仿生形变翼无人机中的螺距轴超弹能
Pitch-axis supermanoeuvrability in a biomimetic morphing-wing UAV
论文作者
论文摘要
鸟类和蝙蝠是极为熟练的传单:无论是狩猎猎物还是逃避掠食者,倒闭后的机动性都是至关重要的特征。在这方面,它们的性能远远超过了类似规模的未开发航空车(UAV)。在无人机中实现后台机动性或超级模式的尝试通常集中在推力矢量技术上。在这里,我们表明,仿生机翼变形为经典的超级武器提供了额外的途径,以及新型的生物启发的后摊位机动性形式。使用最先进的飞行模拟器,配备了多个举起表面运动的模型和延迟差分方程(Goman-khrabrov)的动态失速模型,用于所有举重表面,我们证明了两个经典快速的动作:一种经典的快速鼻子 - 鼻子上的和式手机(RUANAPAS)(RUANAPAS),这是两个生物模拟的形态无人机的能力;以及受生物弹道过渡的启发的墙壁降落操作。我们基于非线性纵向稳定性轮廓的参数变化为这些操作开发了一种指导方法,该方法可以有效探索这些类型的无人机后盘行操作的空间;并产生对有效变形运动学的洞察力,以实现这些操作。我们的结果表明,仿生形变的能力以及对非线性纵向稳定性的变形控制能够在无人机中实现高级瞬态超固定性的形式。
Birds and bats are extremely adept flyers: whether in hunting prey, or evading predators, post-stall manoeuvrability is a characteristic of vital importance. Their performance, in this regard, greatly exceeds that of uncrewed aerial vehicles (UAVs) of similar scale. Attempts to attain post-stall manoeuvrability, or supermanoeuvrability, in UAVs have typically focused on thrust-vectoring technology. Here we show that biomimetic wing morphing offers an additional pathway to classical supermanoeuvrability, as well as novel forms of bioinspired post-stall manoeuvrability. Using a state-of-the-art flight simulator, equipped with a multibody model of lifting surface motion and a delay differential equation (Goman-Khrabrov) dynamic stall model for all lifting surfaces, we demonstrate the capability of a biomimetic morphing-wing UAV for two post-stall manoeuvres: a classical rapid nose-pointing-and-shooting (RaNPAS) manoeuvre; and a wall landing manoeuvre inspired by biological ballistic transitions. We develop a guidance method for these manoeuvres, based on parametric variation of nonlinear longitudinal stability profiles, which allows efficient exploration of the space of post-stall manoeuvres in these types of UAVs; and yields insight into effective morphing kinematics to enable these manoeuvres. Our results demonstrate the capability of biomimetic morphing, and morphing control of nonlinear longitudinal stability, to enable advanced forms of transient supermanoeuvrability in UAVs.