论文标题
Qudit系统中的纠缠多边形不平等
Entanglement polygon inequality in qudit systems
论文作者
论文摘要
纠缠是量子通信任务的重要资源之一。大多数结果都集中在量子纠缠上。我们在这项工作中的目标是表征多部分高维纠缠。首先,我们为$ q $ concrence得出了纠缠多边形的不等式,该不平等现象表现出任何多部分Qudit系统中所有“一对组”边缘纠缠之间的关系。这意味着任何三Qudit系统的边际纠缠的上限和上限。我们进一步扩展到一般的纠缠分布分布不平等,以统一的统一 - $(r,s)$熵纠缠,包括Tsallis Entrody,RényiEntrypy和Von Neumann Entropy纠缠,作为特殊情况。这些结果为表征量子信息处理中的二分高维纠缠提供了新的见解。
Entanglement is one of important resources for quantum communication tasks. Most of results are focused on qubit entanglement. Our goal in this work is to characterize the multipartite high-dimensional entanglement. We firstly derive an entanglement polygon inequality for the $q$-concurrence, which manifests the relationship among all the "one-to-group" marginal entanglements in any multipartite qudit system. This implies lower and upper bounds for the marginal entanglement of any three-qudit system. We further extend to general entanglement distribution inequalities for high-dimensional entanglement in terms of the unified-$(r, s)$ entropy entanglement including Tsallis entropy, Rényi entropy, and von Neumann entropy entanglement as special cases. These results provide new insights into characterizing bipartite high-dimensional entanglement in quantum information processing.