论文标题

知识图的实体一致性:进步,挑战和经验研究

Entity Alignment For Knowledge Graphs: Progress, Challenges, and Empirical Studies

论文作者

Chaurasiya, Deepak, Surisetty, Anil, Kumar, Nitish, Singh, Alok, Dey, Vikrant, Malhotra, Aakarsh, Dhama, Gaurav, Arora, Ankur

论文摘要

实体对齐(EA)标识了指代相同实体的数据库中的实体。基于知识图的嵌入方法最近统治了EA技术。这样的方法将实体映射到低维空间,并根据它们的相似性对齐。随着EA方法论的迅速增长,本文对各种现有的EA方法进行了全面分析,从而阐述了其应用和局限性。此外,我们根据其潜在算法以及它们包含的信息来区分这些方法,以学习实体表示。根据工业数据集中的挑战,我们提出了$ 4 $的研究问题(RQS)。这些RQ从\ textIt {Hubness,度分布,非同构邻域,}和\ textit {name bias}的角度从经验上分析了算法。对于集线器,一个实体成为许多其他实体的最近邻居,我们定义了一个$ h $ - 分数,以量化其对各种算法的性能的影响。此外,我们尝试通过创建低名称偏差数据集来将主要依赖于基准开源数据集中存在的名称偏差的算法的竞争环境升级。我们进一步以$ 14 $的基于嵌入的EA方法创建一个开源存储库,并提出了在EA领域援引进一步研究动机的分析。

Entity Alignment (EA) identifies entities across databases that refer to the same entity. Knowledge graph-based embedding methods have recently dominated EA techniques. Such methods map entities to a low-dimension space and align them based on their similarities. With the corpus of EA methodologies growing rapidly, this paper presents a comprehensive analysis of various existing EA methods, elaborating their applications and limitations. Further, we distinguish the methods based on their underlying algorithms and the information they incorporate to learn entity representations. Based on challenges in industrial datasets, we bring forward $4$ research questions (RQs). These RQs empirically analyse the algorithms from the perspective of \textit{Hubness, Degree distribution, Non-isomorphic neighbourhood,} and \textit{Name bias}. For Hubness, where one entity turns up as the nearest neighbour of many other entities, we define an $h$-score to quantify its effect on the performance of various algorithms. Additionally, we try to level the playing field for algorithms that rely primarily on name-bias existing in the benchmarking open-source datasets by creating a low name bias dataset. We further create an open-source repository for $14$ embedding-based EA methods and present the analysis for invoking further research motivations in the field of EA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源