论文标题
基于多个词典学习的多孔媒体的多尺度重建
Multiscale reconstruction of porous media based on multiple dictionaries learning
论文作者
论文摘要
微观结构的数字建模对于研究多孔介质的物理和运输特性很重要。多孔介质的多尺度建模可以准确地表征宏观倍数和微型倍数(视野)高分辨率三维孔结构模型。本文提出了一种基于多个词典学习的多尺度重建算法,其中将来自同源性高分辨率高分辨率孔结构的边缘模式和微孔模式引入低分辨率孔结构中,以构建一个精细的多尺度孔结构模型。实验结果的定性和定量比较表明,就复杂的孔几何形状和孔隙表面的形态而言,多尺度重建的结果与实际的高分辨率孔结构相似。多尺度重建结果的几何,拓扑和渗透率的特性几乎与实际高分辨率孔结构的几何相同。实验还证明了该算法能够进行多尺度重建,而无需考虑输入的大小。这项工作为多孔媒体进行精细的多尺度建模提供了一种有效的方法。
Digital modeling of the microstructure is important for studying the physical and transport properties of porous media. Multiscale modeling for porous media can accurately characterize macro-pores and micro-pores in a large-FoV (field of view) high-resolution three-dimensional pore structure model. This paper proposes a multiscale reconstruction algorithm based on multiple dictionaries learning, in which edge patterns and micro-pore patterns from homology high-resolution pore structure are introduced into low-resolution pore structure to build a fine multiscale pore structure model. The qualitative and quantitative comparisons of the experimental results show that the results of multiscale reconstruction are similar to the real high-resolution pore structure in terms of complex pore geometry and pore surface morphology. The geometric, topological and permeability properties of multiscale reconstruction results are almost identical to those of the real high-resolution pore structures. The experiments also demonstrate the proposal algorithm is capable of multiscale reconstruction without regard to the size of the input. This work provides an effective method for fine multiscale modeling of porous media.