论文标题
具有两个网格周期校正和几何蒸馏的可解释的MRI重建网络
An Interpretable MRI Reconstruction Network with Two-grid-cycle Correction and Geometric Prior Distillation
论文作者
论文摘要
尽管现有的深度学习压缩性磁共振成像(CS-MRI)方法已经实现了相当令人印象深刻的性能,但对于这种方法来说,可解释性和可推广性仍然具有挑战性,因为从数学分析到网络设计的过渡并不总是足够自然的,但通常它们的大多数人都足够灵活,无法处理多样化摄像带的重新塑造。 {在这项工作中,为了解决解释性和可推广性,我们提出了一个统一的深层展开多样采样比率的可解释的CS-MRI框架。}组合方法提供了比以前的作品更具可推广性的能力,而深度学习获得的可解释性通过几何先前模块来解释。受到多机算法的启发,我们首先将基于CS-MRI的优化算法嵌入到校正缩减方案中,该算法由三种成分组成:预删除模块,校正模块和几何模块和几何蒸馏模块。此外,我们采用条件模块来学习适应性的阶梯长度和噪声水平,这使提出的框架能够通过单个模型共同训练多主比例任务。 {所提出的模型不仅可以补偿重建图像的丢失的上下文信息,该信息是根据几何特征K-空间中低频误差所改进的,而且还整合了基于模型的方法的理论保证以及基于深度学习方法的出色重建性能。因此,它可以为我们提供设计生物医学成像网络的新观点。 {数值实验表明,在定性和定量评估方面,我们的框架优于最先进的方法。} {我们的方法在低CS比率10 \%和平均1.42 DB的1.42 DB的改进的情况下,使用Cartesian Sampling bask上的其他数据集进行了3.18 dB的改进。
Although existing deep learning compressed-sensing-based Magnetic Resonance Imaging (CS-MRI) methods have achieved considerably impressive performance, explainability and generalizability continue to be challenging for such methods since the transition from mathematical analysis to network design not always natural enough, often most of them are not flexible enough to handle multi-sampling-ratio reconstruction assignments. {In this work, to tackle explainability and generalizability, we propose a unifying deep unfolding multi-sampling-ratio interpretable CS-MRI framework.} The combined approach offers more generalizability than previous works whereas deep learning gains explainability through a geometric prior module. Inspired by the multigrid algorithm, we first embed the CS-MRI-based optimization algorithm into correction-distillation scheme that consists of three ingredients: pre-relaxation module, correction module and geometric prior distillation module. Furthermore, we employ a condition module to learn adaptively step-length and noise level, which enables the proposed framework to jointly train multi-ratio tasks through a single model. { The proposed model not only compensates for the lost contextual information of reconstructed image which is refined from low frequency error in geometric characteristic k-space}, but also integrates the theoretical guarantee of model-based methods and the superior reconstruction performances of deep learning-based methods. Therefore, it can give us a novel perspective to design biomedical imaging networks. { Numerical experiments show that our framework outperforms state-of-the-art methods in terms of qualitative and quantitative evaluations.} {Our method achieves 3.18 dB improvement at low CS ratio 10\% and average 1.42 dB improvement over other comparison methods on brain dataset using Cartesian sampling mask.