论文标题

使用多代理增强学习的无线网络分布式传输控制

Distributed Transmission Control for Wireless Networks using Multi-Agent Reinforcement Learning

论文作者

Farquhar, Collin, Kumar, Prem Sagar Pattanshetty Vasanth, Jagannath, Anu, Jagannath, Jithin

论文摘要

我们检查了传输控制的问题,即在分布式无线通信网络中通过多代理增强学习的镜头中的传输问题。大多数使用强化学习来控制或安排传输的作品都使用了一些集中的控制机制,而我们的方法是完全分布的。每个发射机节点是一种独立的增强学习代理,并且没有直接了解其他代理商采取的行动。我们考虑只有一部分代理才能一次成功传输的情况,因此每个代理必须学会与其他代理合作行动。代理商可以决定将一定数量的步骤传输到未来,但是该决定没有传达给其他代理商,因此单个代理商试图在适当时间进行传输的任务。我们通过研究不同动作空间的影响来实现这种协作行为。我们对物理层不可知,这使我们的方法适用于许多类型的网络。我们认为,与我们类似的方法可能在使用独立代理的多代理增强学习的其他领域中很有用。

We examine the problem of transmission control, i.e., when to transmit, in distributed wireless communications networks through the lens of multi-agent reinforcement learning. Most other works using reinforcement learning to control or schedule transmissions use some centralized control mechanism, whereas our approach is fully distributed. Each transmitter node is an independent reinforcement learning agent and does not have direct knowledge of the actions taken by other agents. We consider the case where only a subset of agents can successfully transmit at a time, so each agent must learn to act cooperatively with other agents. An agent may decide to transmit a certain number of steps into the future, but this decision is not communicated to the other agents, so it the task of the individual agents to attempt to transmit at appropriate times. We achieve this collaborative behavior through studying the effects of different actions spaces. We are agnostic to the physical layer, which makes our approach applicable to many types of networks. We submit that approaches similar to ours may be useful in other domains that use multi-agent reinforcement learning with independent agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源