论文标题

双方多边形模型:纠缠类及其非局部行为

Bipartite polygon models: entanglement classes and their nonlocal behaviour

论文作者

Kolangatt, Mayalakshmi, Muruganandan, Thigazholi, Naik, Sahil Gopalkrishna, Guha, Tamal, Banik, Manik, Saha, Sutapa

论文摘要

Hardy的论点构成了识别多方相关性非本地特征的优雅逻辑测试。在本文中,我们研究了Hardy在广泛的操作理论中的非本地行为,包括量子状态空间作为特定情况。具体而言,我们首先检查了具有常规多边形形式的状态空间描述的更广泛的操作模型。首先,我们提出了一种系统的方法,以表征这些模型的两部分组成中纠缠状态的可能形式。然后,通过明确的示例,我们确定表现出强烈的非局部性的纠缠状态的类别。值得注意的是,与均匀的多边形相比,我们的发现以奇数多边形模型和量子态空间之间的近距离类比。此外,我们证明了混合状态耐硬势在任何操作模型中的出现是由其动态描述中固有的特定对称性决定的。最后,我们的结果发现了一类未开发的几乎可以与显式操作模型相关联的几乎量词相关性。

Hardy's argument constitutes an elegantly logical test for identifying nonlocal features of multipartite correlations. In this paper, we investigate Hardy's nonlocal behavior within a broad class of operational theories, including the qubit state space as a specific case. Specifically, we begin by examining a wider range of operational models with state space descriptions in the form of regular polygons. First, we present a systematic method to characterize the possible forms of entangled states within bipartite compositions of these models. Then, through explicit examples, we identify the classes of entangled states that exhibit Hardy-type nonlocality. Remarkably, our findings highlight a closer analogy between odd polygon models and the qubit state space in terms of their bipartite Hardy nonlocal behavior compared to even-sided polygons. Furthermore, we demonstrate that the emergence of mixed-state Hardy nonlocality in any operational model is determined by a specific symmetry inherent in its dynamic description. Finally, our results uncover an unexplored class of almost-quantum correlations that can be associated with an explicit operational model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源