论文标题
半球动力学中的Hausdorff尺寸
Hausdorff dimension in quasiregular dynamics
论文作者
论文摘要
结果表明,$ {\ mathbb r}^3 $的Quasiregular自图的快速逃逸集的Hausdorff尺寸可以在间隔$ [1,3] $中占据任何值。在某些生长条件下,估计了此类地图的朱莉娅集合的Hausdorff尺寸。
It is shown that the Hausdorff dimension of the fast escaping set of a quasiregular self-map of ${\mathbb R}^3$ can take any value in the interval $[1,3]$. The Hausdorff dimension of the Julia set of such a map is estimated under some growth condition.