论文标题
Lund和Cambridge多重性
Lund and Cambridge multiplicities for precision physics
论文作者
论文摘要
我们重新审视高能碰撞中平均喷气型多样性的计算。首先,我们基于使用剑桥喷气机算法获得的(sub)喷射多重性的新定义。我们开发了一种新的系统重新调整方法。这使我们能够计算出电子脉络膜歼灭的lund和剑桥平均多重性,从而将次要到双(NNDL)对数准确度(NNDL)对数准确度,这是比文献中以前的工作更高的订单。我们将重新定义的计算与精确的NLO($ \ MATHCAL {O}(α_s^2)$)匹配,显示了LEP Energies lund多样性的预测,理论上的不确定性最高为$ 50 \%$ $ $ 50 \%$ $。添加通过Monte Carlo模拟获得的强调校正,我们还与现有的Cambridge多重性数据显示了一个很好的一致性。最后,为了突出我们方法的灵活性,我们将Lund多样性计算扩展到HADRONIC碰撞,在该碰撞中,我们可以达到彩色单元生产的近代到双对数精度。
We revisit the calculation of the average jet multiplicity in high-energy collisions. First, we introduce a new definition of (sub)jet multiplicity based on Lund declusterings obtained using the Cambridge jet algorithm. We develop a new systematic resummation approach. This allows us to compute both the Lund and the Cambridge average multiplicities to next-to-next-to-double (NNDL) logarithmic accuracy in electron-positron annihilation, an order higher in accuracy than previous works in the literature. We match our resummed calculation to the exact NLO ($\mathcal{O}(α_s^2)$) result, showing predictions for the Lund multiplicity at LEP energies with theoretical uncertainties up to $50\%$ smaller than the previous state-of-the-art. Adding hadronisation corrections obtained by Monte Carlo simulations, we also show a good agreement with existing Cambridge multiplicity data. Finally, to highlight the flexibility of our method, we extend the Lund multiplicity calculation to hadronic collisions where we reach next-to-double logarithmic accuracy for colour singlet production.