论文标题

旋转晶格的经典基础状态

Classical ground states of spin lattices

论文作者

Schmidt, Heinz-Jürgen, Richter, Johannes

论文摘要

我们提出了Luttinger-Tisza-Lyons-Kaplan(LTLK)的概括,该理论是布拉维斯晶格的经典基础状态,以及海森堡耦合到非bravais lattices。它包括在傅立叶变换耦合矩阵的对角线中添加某些拉格朗日参数,类似于已经发表的一般基态问题的理论。该方法通过应用于改良的蜂窝晶格的应用来说明,该蜂窝晶格具有独家的三维接地状态以及两个耦合常数的不同值的经典自旋基态。另一个例子是修改的正方形晶格,表明我们还可以通过我们的方法获得所谓的不可授权的接地状态。

We present a generalization of the Luttinger-Tisza-Lyons-Kaplan (LTLK) theory of classical ground states of Bravais lattices with Heisenberg coupling to non-Bravais lattices. It consists of adding certain Lagrange parameters to the diagonal of the Fourier transformed coupling matrix analogous to the theory of the general ground state problem already published. This approach is illustrated by an application to a modified honeycomb lattice, which has exclusive three-dimensional ground states as well as a classical spin-liquid ground state for different values of the two coupling constants. Another example, the modified square lattice, shows that we can also obtain so-called incommensurable ground states by our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源